Cargando…

Chiral Control in Pentacoordinate Systems: The Case of Organosilicates

[Image: see text] Chirality at the central element of pentacoordinate systems can be controlled with two identical bidentate ligands. In such cases the topological Levi–Desargues graph for all the Berry pseudorotations (BPR, max. 20) reduces to interconnected inner and outer “circles” that represent...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Boon, Leon J. P., van Gelderen, Laurens, de Groot, Tim R., Lutz, Martin, Slootweg, J. Chris, Ehlers, Andreas W., Lammertsma, Koop
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209177/
https://www.ncbi.nlm.nih.gov/pubmed/30277076
http://dx.doi.org/10.1021/acs.inorgchem.8b01861
_version_ 1783366855995424768
author van der Boon, Leon J. P.
van Gelderen, Laurens
de Groot, Tim R.
Lutz, Martin
Slootweg, J. Chris
Ehlers, Andreas W.
Lammertsma, Koop
author_facet van der Boon, Leon J. P.
van Gelderen, Laurens
de Groot, Tim R.
Lutz, Martin
Slootweg, J. Chris
Ehlers, Andreas W.
Lammertsma, Koop
author_sort van der Boon, Leon J. P.
collection PubMed
description [Image: see text] Chirality at the central element of pentacoordinate systems can be controlled with two identical bidentate ligands. In such cases the topological Levi–Desargues graph for all the Berry pseudorotations (BPR, max. 20) reduces to interconnected inner and outer “circles” that represent the dynamic enantiomer pair. High enough barriers of the BPR crossovers between the two circles is all what is needed to ascertain chiral integrity. This is illustrated computationally and experimentally for the organosilicates 7 and 10 that carry besides a Me (a), Et (b), Ph (c), or F (d) group two bidentate 2-(phenyl)benzo[b]-thiophene or 2-(phenyl)naphthyl ligands, respectively. The enantiomers of tetraorganosilane precursor 9 could be separated by column chromatography. Their chiral integrity persisted on forming the silicates. CD spectra are reported for 10c. Fluoro derivative 10d is shown to have its electronegative F substituent in an equatorial position, is stable toward hydrolysis, and its enantiomers do not racemize at ambient temperatures, while those of 10c racemize slowly.
format Online
Article
Text
id pubmed-6209177
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-62091772018-11-05 Chiral Control in Pentacoordinate Systems: The Case of Organosilicates van der Boon, Leon J. P. van Gelderen, Laurens de Groot, Tim R. Lutz, Martin Slootweg, J. Chris Ehlers, Andreas W. Lammertsma, Koop Inorg Chem [Image: see text] Chirality at the central element of pentacoordinate systems can be controlled with two identical bidentate ligands. In such cases the topological Levi–Desargues graph for all the Berry pseudorotations (BPR, max. 20) reduces to interconnected inner and outer “circles” that represent the dynamic enantiomer pair. High enough barriers of the BPR crossovers between the two circles is all what is needed to ascertain chiral integrity. This is illustrated computationally and experimentally for the organosilicates 7 and 10 that carry besides a Me (a), Et (b), Ph (c), or F (d) group two bidentate 2-(phenyl)benzo[b]-thiophene or 2-(phenyl)naphthyl ligands, respectively. The enantiomers of tetraorganosilane precursor 9 could be separated by column chromatography. Their chiral integrity persisted on forming the silicates. CD spectra are reported for 10c. Fluoro derivative 10d is shown to have its electronegative F substituent in an equatorial position, is stable toward hydrolysis, and its enantiomers do not racemize at ambient temperatures, while those of 10c racemize slowly. American Chemical Society 2018-10-02 2018-10-15 /pmc/articles/PMC6209177/ /pubmed/30277076 http://dx.doi.org/10.1021/acs.inorgchem.8b01861 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle van der Boon, Leon J. P.
van Gelderen, Laurens
de Groot, Tim R.
Lutz, Martin
Slootweg, J. Chris
Ehlers, Andreas W.
Lammertsma, Koop
Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title_full Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title_fullStr Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title_full_unstemmed Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title_short Chiral Control in Pentacoordinate Systems: The Case of Organosilicates
title_sort chiral control in pentacoordinate systems: the case of organosilicates
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209177/
https://www.ncbi.nlm.nih.gov/pubmed/30277076
http://dx.doi.org/10.1021/acs.inorgchem.8b01861
work_keys_str_mv AT vanderboonleonjp chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT vangelderenlaurens chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT degroottimr chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT lutzmartin chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT slootwegjchris chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT ehlersandreasw chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates
AT lammertsmakoop chiralcontrolinpentacoordinatesystemsthecaseoforganosilicates