Cargando…
Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises
In this paper, a novel robust particle filter is proposed to address the measurement outliers occurring in the multiple autonomous underwater vehicles (AUVs) based cooperative navigation (CN). As compared with the classic unscented particle filter (UPF) based on Gaussian assumption of measurement no...
Autores principales: | Fan, Ying, Zhang, Yonggang, Wang, Guoqing, Wang, Xiaoyu, Li, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209909/ https://www.ncbi.nlm.nih.gov/pubmed/30241388 http://dx.doi.org/10.3390/s18103183 |
Ejemplares similares
-
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
por: Liu, Xi, et al.
Publicado: (2016) -
Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode
por: Hou, Bowen, et al.
Publicado: (2018) -
Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
por: Deng, Zhihong, et al.
Publicado: (2018) -
Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust Power System State Estimation
por: Sun, Zhenglong, et al.
Publicado: (2022) -
Adaptive Maximum Correntropy Gaussian Filter Based on Variational Bayes
por: Wang, Guoqing, et al.
Publicado: (2018)