Cargando…
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
Microelectromechanical Systems (MEMS) Inertial Measurement Unit (IMU) containing a three-orthogonal gyroscope and three-orthogonal accelerometer has been widely utilized in position and navigation, due to gradually improved accuracy and its small size and low cost. However, the errors of a MEMS IMU...
Autores principales: | Jiang, Changhui, Chen, Shuai, Chen, Yuwei, Zhang, Boya, Feng, Ziyi, Zhou, Hui, Bo, Yuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210601/ https://www.ncbi.nlm.nih.gov/pubmed/30326646 http://dx.doi.org/10.3390/s18103470 |
Ejemplares similares
-
Performance Analysis of a Deep Simple Recurrent Unit Recurrent Neural Network (SRU-RNN) in MEMS Gyroscope De-Noising
por: Jiang, Changhui, et al.
Publicado: (2018) -
Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions
por: Han, Shipeng, et al.
Publicado: (2021) -
Development of a Soil Moisture Prediction Model Based on Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) in Soybean Cultivation
por: Park, Soo-Hwan, et al.
Publicado: (2023) -
RNN-Aided Human Velocity Estimation from a Single IMU †
por: Feigl, Tobias, et al.
Publicado: (2020) -
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
por: Curreri, Francesco, et al.
Publicado: (2021)