Cargando…
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
This paper proposes a way for drift compensation in electronic noses (e-nose) that often suffers from uncertain and unpredictable sensor drift. Traditional machine learning methods for odor recognition require consistent data distribution, which makes the model trained with previous data less genera...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210950/ https://www.ncbi.nlm.nih.gov/pubmed/30249024 http://dx.doi.org/10.3390/s18103209 |