Cargando…

Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System

This paper proposes a way for drift compensation in electronic noses (e-nose) that often suffers from uncertain and unpredictable sensor drift. Traditional machine learning methods for odor recognition require consistent data distribution, which makes the model trained with previous data less genera...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Yang, Xu, Juan, Liang, Zhifang, Xiong, Lian, Yang, Haocheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210950/
https://www.ncbi.nlm.nih.gov/pubmed/30249024
http://dx.doi.org/10.3390/s18103209
Descripción
Sumario:This paper proposes a way for drift compensation in electronic noses (e-nose) that often suffers from uncertain and unpredictable sensor drift. Traditional machine learning methods for odor recognition require consistent data distribution, which makes the model trained with previous data less generalized. In the actual application scenario, the data collected previously and the data collected later may have different data distributions due to the sensor drift. If the dataset without sensor drift is treated as a source domain and the dataset with sensor drift as a target domain, a domain correction based on kernel transformation (DCKT) method is proposed to compensate the sensor drift. The proposed method makes the distribution consistency of two domains greatly improved through mapping to a high-dimensional reproducing kernel space and reducing the domain distance. A public benchmark sensor drift dataset is used to verify the effectiveness and efficiency of the proposed DCKT method. The experimental result shows that the proposed method yields the highest average accuracies compared to other considered methods.