Cargando…
Three-beam convergent-beam electron diffraction for measuring crystallographic phases
Under almost all circumstances, electron diffraction patterns contain information about the phases of structure factors, a consequence of the short wavelength of an electron and its strong Coulombic interaction with matter. However, extracting this information remains a challenge and no generic meth...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211523/ https://www.ncbi.nlm.nih.gov/pubmed/30443359 http://dx.doi.org/10.1107/S2052252518012216 |
Sumario: | Under almost all circumstances, electron diffraction patterns contain information about the phases of structure factors, a consequence of the short wavelength of an electron and its strong Coulombic interaction with matter. However, extracting this information remains a challenge and no generic method exists. In this work, a set of simple analytical expressions is derived for the intensity distribution in convergent-beam electron diffraction (CBED) patterns recorded under three-beam conditions. It is shown that these expressions can be used to identify features in three-beam CBED patterns from which three-phase invariants can be extracted directly, without any iterative refinement processes. The octant, in which the three-phase invariant lies, can be determined simply by inspection of the indexed CBED patterns (i.e. the uncertainty of the phase measurement is ±22.5°). This approach is demonstrated with the experimental measurement of three-phase invariants in two simple test cases: centrosymmetric Si and non-centrosymmetric GaAs. This method may complement existing structure determination methods by providing direct measurements of three-phase invariants to replace ‘guessed’ invariants in ab initio phasing methods and hence provide more stringent constraints to the structure solution. |
---|