Cargando…
MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes
Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212903/ https://www.ncbi.nlm.nih.gov/pubmed/30262720 http://dx.doi.org/10.3390/ijms19102941 |
_version_ | 1783367647302254592 |
---|---|
author | Koyama, Riko Mannic, Tiphaine Ito, Jumpei Amar, Laurence Zennaro, Maria-Christina Rossier, Michel Florian Maturana, Andrés Daniel |
author_facet | Koyama, Riko Mannic, Tiphaine Ito, Jumpei Amar, Laurence Zennaro, Maria-Christina Rossier, Michel Florian Maturana, Andrés Daniel |
author_sort | Koyama, Riko |
collection | PubMed |
description | Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein. |
format | Online Article Text |
id | pubmed-6212903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62129032018-11-14 MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes Koyama, Riko Mannic, Tiphaine Ito, Jumpei Amar, Laurence Zennaro, Maria-Christina Rossier, Michel Florian Maturana, Andrés Daniel Int J Mol Sci Article Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein. MDPI 2018-09-27 /pmc/articles/PMC6212903/ /pubmed/30262720 http://dx.doi.org/10.3390/ijms19102941 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koyama, Riko Mannic, Tiphaine Ito, Jumpei Amar, Laurence Zennaro, Maria-Christina Rossier, Michel Florian Maturana, Andrés Daniel MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title | MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title_full | MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title_fullStr | MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title_full_unstemmed | MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title_short | MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes |
title_sort | microrna-204 is necessary for aldosterone-stimulated t-type calcium channel expression in cardiomyocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212903/ https://www.ncbi.nlm.nih.gov/pubmed/30262720 http://dx.doi.org/10.3390/ijms19102941 |
work_keys_str_mv | AT koyamariko microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT mannictiphaine microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT itojumpei microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT amarlaurence microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT zennaromariachristina microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT rossiermichelflorian microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes AT maturanaandresdaniel microrna204isnecessaryforaldosteronestimulatedttypecalciumchannelexpressionincardiomyocytes |