Cargando…

Characterisation of InGaN by Photoconductive Atomic Force Microscopy

Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to character...

Descripción completa

Detalles Bibliográficos
Autores principales: Weatherley, Thomas F. K., Massabuau, Fabien C.-P., Kappers, Menno J., Oliver, Rachel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212956/
https://www.ncbi.nlm.nih.gov/pubmed/30248899
http://dx.doi.org/10.3390/ma11101794
Descripción
Sumario:Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to characterise four thick (∼130 nm) In [Formula: see text] Ga [Formula: see text] N films with x = 5%, 9%, 12%, and 15%. Lower photocurrent was observed on elevated ridges around defects (such as V-pits) in the films with [Formula: see text] %. Current-voltage curve analysis using the PC-AFM setup showed that this was due to a higher turn-on voltage on these ridges compared to surrounding material. To further understand this phenomenon, V-pit cross sections from the 9% and 15% films were characterised using transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. This identified a subsurface indium-deficient region surrounding the V-pit in the lower indium content film, which was not present in the 15% sample. Although this cannot directly explain the impact of ridges on turn-on voltage, it is likely to be related. Overall, the data presented here demonstrate the potential of PC-AFM in the field of III-nitride semiconductors.