Cargando…
Salmon Fillet Intake Led to Higher Serum Triacylglycerol in Obese Zucker Fa/Fa Rats But Not in Normolipidemic Long-Evans Rats
The triacylglycerol lowering effect of fatty fish and fish oils is well recognized, however we recently showed that salmon intake resulted in higher serum triacylglycerol concentration in obese Zucker fa/fa rats. Since effects of salmon fillet have never before been studied in rats, the objective of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213735/ https://www.ncbi.nlm.nih.gov/pubmed/30297656 http://dx.doi.org/10.3390/nu10101459 |
Sumario: | The triacylglycerol lowering effect of fatty fish and fish oils is well recognized, however we recently showed that salmon intake resulted in higher serum triacylglycerol concentration in obese Zucker fa/fa rats. Since effects of salmon fillet have never before been studied in rats, the objective of this study was to compare effects of salmon intake on serum lipids in hyperlipidemic obese rats with normolipidemic lean rats. Zucker fa/fa rats and Long-Evans rats were fed diets with 25% protein from baked salmon fillet and 75% protein from casein, or casein as sole protein source (control group) for four weeks. Serum triacylglycerol concentration was higher, and cholesterol and apolipoproteinB-100 concentrations were lower in Zucker fa/fa rats fed Baked Salmon Diet compared to Zucker fa/fa rats fed Control Diet, with no differences in serum triacylglycerol, cholesterol and apolipoproteinB-100 between Long-Evans rats fed Baked Salmon Diet or Control Diet. Serum triacylglycerol fatty acid composition showed greater similarities to dietary fatty acids in Zucker fa/fa rats than in Long-Evans rats. To conclude, intake of baked salmon fillet resulted in higher serum triacylglycerol concentration and lower serum cholesterol concentration in hyperlipidemic obese Zucker fa/fa rats but did not affect serum lipids in normolipidemic lean Long-Evans rats. |
---|