Cargando…

DNA protein crosslink proteolysis repair: From yeast to premature ageing and cancer in humans

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Fielden, John, Ruggiano, Annamaria, Popović, Marta, Ramadan, Kristijan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219452/
https://www.ncbi.nlm.nih.gov/pubmed/30170832
http://dx.doi.org/10.1016/j.dnarep.2018.08.025
Descripción
Sumario:DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.