Cargando…
Accelerated Ru–Cu Trinuclear Cooperative C−H Bond Functionalization of Carbazoles: A Kinetic and Computational Investigation
The mechanism of a trinuclear cooperative dehydrogenative C−N bond‐forming reaction is investigated in this work, which avoids the use of chelate‐assisting directing groups. Two new highly efficient Ru/Cu co‐catalyzed systems were identified, allowing orders of magnitude greater TOFs than the previo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221041/ https://www.ncbi.nlm.nih.gov/pubmed/29928784 http://dx.doi.org/10.1002/chem.201802886 |
Sumario: | The mechanism of a trinuclear cooperative dehydrogenative C−N bond‐forming reaction is investigated in this work, which avoids the use of chelate‐assisting directing groups. Two new highly efficient Ru/Cu co‐catalyzed systems were identified, allowing orders of magnitude greater TOFs than the previous state of the art. In‐depth kinetic studies were performed in combination with advanced DFT calculations, which reveal a decisive rate‐determining trinuclear Ru–Cu cooperative reductive elimination step (CRE). |
---|