Cargando…
Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan
Different teas from everywhere are very useful and have been extensively studied. We studied the antioxidant activity of herbal teas and green teas from Hainan, Mallotus oblongifolius Muell. Arg. (MO), Ilex kudingcha C.J. Tseng (KD), Camellia sinensis var. assamica (J. W. Mast.) Kitam. Hainan Dayezh...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222971/ https://www.ncbi.nlm.nih.gov/pubmed/30301226 http://dx.doi.org/10.3390/molecules23102550 |
_version_ | 1783369331850084352 |
---|---|
author | Li, Hua Wang, Lanying Luo, Yanping |
author_facet | Li, Hua Wang, Lanying Luo, Yanping |
author_sort | Li, Hua |
collection | PubMed |
description | Different teas from everywhere are very useful and have been extensively studied. We studied the antioxidant activity of herbal teas and green teas from Hainan, Mallotus oblongifolius Muell. Arg. (MO), Ilex kudingcha C.J. Tseng (KD), Camellia sinensis var. assamica (J. W. Mast.) Kitam. Hainan Dayezhong (DY), and Camellia sinensis (L.) O. Ktze. (produced from Hainan Baisha (BS)). The total phenol content and total flavonoid content from water extracts, resin extracts and fractions of herbal teas and green teas were compared. Later, eight fractions of herbal teas and green teas were subjected to UPLC-PDA-ESI-(−)-HRMS. We determined 1-diphenyl -2-picryl-hydrazyl radical and hydroxyl free radical scavenging activity by electron paramagnetic resonance spectroscopy. We subjected Saccharomyces cerevisiae to hydrogen peroxide, stress and evaluated antioxidant activity of herbal teas and green teas in cellulo. The experiment identified more than 14 potential antioxidant compounds from herbal teas and green teas. The herbal teas and green teas had a clearance rate higher than ferulic acid at the same concentrations. MO best reduced intracellular oxidation levels and increased catalase, glutathione reductase activities, glutathione reduced and glutathione oxidized content. KD had the highest cell survival rate and reduced cell lipid peroxidation. DY best improved superoxide dismutase activity and BS was the most active in the halo test. Therefore, we concluded that MO had stronger antioxidant activity than other herbal teas and green teas from Hainan, especially, which reduce S. cerevisiae oxidative stress under H(2)O(2) stress. |
format | Online Article Text |
id | pubmed-6222971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62229712018-11-13 Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan Li, Hua Wang, Lanying Luo, Yanping Molecules Article Different teas from everywhere are very useful and have been extensively studied. We studied the antioxidant activity of herbal teas and green teas from Hainan, Mallotus oblongifolius Muell. Arg. (MO), Ilex kudingcha C.J. Tseng (KD), Camellia sinensis var. assamica (J. W. Mast.) Kitam. Hainan Dayezhong (DY), and Camellia sinensis (L.) O. Ktze. (produced from Hainan Baisha (BS)). The total phenol content and total flavonoid content from water extracts, resin extracts and fractions of herbal teas and green teas were compared. Later, eight fractions of herbal teas and green teas were subjected to UPLC-PDA-ESI-(−)-HRMS. We determined 1-diphenyl -2-picryl-hydrazyl radical and hydroxyl free radical scavenging activity by electron paramagnetic resonance spectroscopy. We subjected Saccharomyces cerevisiae to hydrogen peroxide, stress and evaluated antioxidant activity of herbal teas and green teas in cellulo. The experiment identified more than 14 potential antioxidant compounds from herbal teas and green teas. The herbal teas and green teas had a clearance rate higher than ferulic acid at the same concentrations. MO best reduced intracellular oxidation levels and increased catalase, glutathione reductase activities, glutathione reduced and glutathione oxidized content. KD had the highest cell survival rate and reduced cell lipid peroxidation. DY best improved superoxide dismutase activity and BS was the most active in the halo test. Therefore, we concluded that MO had stronger antioxidant activity than other herbal teas and green teas from Hainan, especially, which reduce S. cerevisiae oxidative stress under H(2)O(2) stress. MDPI 2018-10-06 /pmc/articles/PMC6222971/ /pubmed/30301226 http://dx.doi.org/10.3390/molecules23102550 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Hua Wang, Lanying Luo, Yanping Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title | Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title_full | Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title_fullStr | Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title_full_unstemmed | Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title_short | Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan |
title_sort | composition analysis by uplc-pda-esi (−)-hrms and antioxidant activity using saccharomyces cerevisiae model of herbal teas and green teas from hainan |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222971/ https://www.ncbi.nlm.nih.gov/pubmed/30301226 http://dx.doi.org/10.3390/molecules23102550 |
work_keys_str_mv | AT lihua compositionanalysisbyuplcpdaesihrmsandantioxidantactivityusingsaccharomycescerevisiaemodelofherbalteasandgreenteasfromhainan AT wanglanying compositionanalysisbyuplcpdaesihrmsandantioxidantactivityusingsaccharomycescerevisiaemodelofherbalteasandgreenteasfromhainan AT luoyanping compositionanalysisbyuplcpdaesihrmsandantioxidantactivityusingsaccharomycescerevisiaemodelofherbalteasandgreenteasfromhainan |