Cargando…
Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes
A number of machine learning-based predictors have been developed for identifying immunogenic T-cell epitopes based on major histocompatibility complex (MHC) class I and II binding affinities. Rationally selecting the most appropriate tool has been complicated by the evolving training data and machi...
Autores principales: | Zhao, Weilong, Sher, Xinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224037/ https://www.ncbi.nlm.nih.gov/pubmed/30408041 http://dx.doi.org/10.1371/journal.pcbi.1006457 |
Ejemplares similares
-
A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules
por: Peters, Bjoern, et al.
Publicado: (2006) -
Customized Predictions of Peptide–MHC Binding and T-Cell Epitopes Using EPIMHC
por: Molero-Abraham, Magdalena, et al.
Publicado: (2014) -
Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions
por: Kim, Yohan, et al.
Publicado: (2014) -
MHCBN 4.0: A database of MHC/TAP binding peptides and T-cell epitopes
por: Lata, Sneh, et al.
Publicado: (2009) -
Yeast display platform with expression of linear peptide epitopes for high-throughput assessment of peptide-MHC-II binding
por: Huisman, Brooke D., et al.
Publicado: (2023)