Cargando…
Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis †
Two 3D quantitative structure–activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB(1) and CB(2)) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB(1) and CB(2) ligands. A set of 312 molecules have been used to...
Autores principales: | Floresta, Giuseppe, Apirakkan, Orapan, Rescifina, Antonio, Abbate, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225167/ https://www.ncbi.nlm.nih.gov/pubmed/30200181 http://dx.doi.org/10.3390/molecules23092183 |
Ejemplares similares
-
Sigma-2 receptor ligands QSAR model dataset
por: Rescifina, Antonio, et al.
Publicado: (2017) -
Structure-Based Approach for the Prediction of Mu-opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules
por: Floresta, Giuseppe, et al.
Publicado: (2019) -
FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets
por: Floresta, Giuseppe, et al.
Publicado: (2018) -
Machine learning vs. field 3D-QSAR models for serotonin 2A receptor psychoactive substances identification
por: Floresta, Giuseppe, et al.
Publicado: (2021) -
Computational Tools in the Discovery of FABP4 Ligands: A Statistical and Molecular Modeling Approach †
por: Floresta, Giuseppe, et al.
Publicado: (2019)