Cargando…
Herpes simplex virus type 2 infection triggers AP-1 transcription activity through TLR4 signaling in genital epithelial cells
BACKGROUND: The pattern recognition receptors (PPRs) are the earliest phase of the host defense against pathogens in genital epithelium, and toll-like receptors (TLRs) are best characterized PPRs mediating innate immune responses. Herpes simplex virus type 2 (HSV-2), a member of herpesviridae family...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233380/ https://www.ncbi.nlm.nih.gov/pubmed/30419930 http://dx.doi.org/10.1186/s12985-018-1087-3 |
Sumario: | BACKGROUND: The pattern recognition receptors (PPRs) are the earliest phase of the host defense against pathogens in genital epithelium, and toll-like receptors (TLRs) are best characterized PPRs mediating innate immune responses. Herpes simplex virus type 2 (HSV-2), a member of herpesviridae family, causes one of the most prevalent sexually transmitted infection in the world. In this paper, we described that HSV-2 infection would induce activator protein 1 (AP-1) via TLR4-MyD88/TRIF pathway in human genital epithelial cell. METHODS: TLRs expression profiles and changes was investigated in HSV-2-infected cells. The effect of TLR4-MyD88/TRIF on HSV-2-induced AP-1 activation and viral replication was also evaluated. The TLR4 translocation change was examined after viral infection. Finally, viral ICP0 effect on TLR4 signaling and TLR4-promoter regulation were primarily studied. RESULTS: HSV-2-induced AP-1 activation was dependent on TLR4 and downstream adaptor molecules MyD88 and TRIF. And also, TLR4, MyD88 and TRIF was proved to affect HSV-2 replication. AP-1 activation would also be enhanced via overexpression of myeloid differentiation protein 2 (MD2), implicating that it might be a necessary accessory for TLR4 to sense HSV-2 infection. Protein quantification of cytoplasmic and membrane-associated TLR4 revealed that HSV-2 infection increased membrane-anchoring TLR4 level, but not cytoplasmic ones. Viral ICP0 could augment cellular AP-1, TLR4 promoter activation and TLR4 expression level. The specific inhibitor treatment and transcription factor binding site scanning in TLR4 promoter region showed that AP-1 activity was essential for TLR4-promoter activation. CONCLUSIONS: Taken together, HSV-2 infection could stimulate AP-1 activation via TLR4-MyD88/TRIF axis, and then feedback to up-regulate TLR4 expression in human genital epithelial cells. |
---|