Cargando…

Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites

In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_12...

Descripción completa

Detalles Bibliográficos
Autores principales: Guggisberg, Ann M., Frasse, Philip M., Jezewski, Andrew J., Kafai, Natasha M., Gandhi, Aakash Y., Erlinger, Samuel J., Odom John, Audrey R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234871/
https://www.ncbi.nlm.nih.gov/pubmed/30425143
http://dx.doi.org/10.1128/mBio.01193-18
_version_ 1783370793150840832
author Guggisberg, Ann M.
Frasse, Philip M.
Jezewski, Andrew J.
Kafai, Natasha M.
Gandhi, Aakash Y.
Erlinger, Samuel J.
Odom John, Audrey R.
author_facet Guggisberg, Ann M.
Frasse, Philip M.
Jezewski, Andrew J.
Kafai, Natasha M.
Gandhi, Aakash Y.
Erlinger, Samuel J.
Odom John, Audrey R.
author_sort Guggisberg, Ann M.
collection PubMed
description In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation.
format Online
Article
Text
id pubmed-6234871
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-62348712018-11-15 Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites Guggisberg, Ann M. Frasse, Philip M. Jezewski, Andrew J. Kafai, Natasha M. Gandhi, Aakash Y. Erlinger, Samuel J. Odom John, Audrey R. mBio Research Article In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation. American Society for Microbiology 2018-11-13 /pmc/articles/PMC6234871/ /pubmed/30425143 http://dx.doi.org/10.1128/mBio.01193-18 Text en Copyright © 2018 Guggisberg et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Guggisberg, Ann M.
Frasse, Philip M.
Jezewski, Andrew J.
Kafai, Natasha M.
Gandhi, Aakash Y.
Erlinger, Samuel J.
Odom John, Audrey R.
Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title_full Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title_fullStr Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title_full_unstemmed Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title_short Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
title_sort suppression of drug resistance reveals a genetic mechanism of metabolic plasticity in malaria parasites
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234871/
https://www.ncbi.nlm.nih.gov/pubmed/30425143
http://dx.doi.org/10.1128/mBio.01193-18
work_keys_str_mv AT guggisbergannm suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT frassephilipm suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT jezewskiandrewj suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT kafainatasham suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT gandhiaakashy suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT erlingersamuelj suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites
AT odomjohnaudreyr suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites