Cargando…
Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites
In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_12...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234871/ https://www.ncbi.nlm.nih.gov/pubmed/30425143 http://dx.doi.org/10.1128/mBio.01193-18 |
_version_ | 1783370793150840832 |
---|---|
author | Guggisberg, Ann M. Frasse, Philip M. Jezewski, Andrew J. Kafai, Natasha M. Gandhi, Aakash Y. Erlinger, Samuel J. Odom John, Audrey R. |
author_facet | Guggisberg, Ann M. Frasse, Philip M. Jezewski, Andrew J. Kafai, Natasha M. Gandhi, Aakash Y. Erlinger, Samuel J. Odom John, Audrey R. |
author_sort | Guggisberg, Ann M. |
collection | PubMed |
description | In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation. |
format | Online Article Text |
id | pubmed-6234871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-62348712018-11-15 Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites Guggisberg, Ann M. Frasse, Philip M. Jezewski, Andrew J. Kafai, Natasha M. Gandhi, Aakash Y. Erlinger, Samuel J. Odom John, Audrey R. mBio Research Article In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation. American Society for Microbiology 2018-11-13 /pmc/articles/PMC6234871/ /pubmed/30425143 http://dx.doi.org/10.1128/mBio.01193-18 Text en Copyright © 2018 Guggisberg et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Guggisberg, Ann M. Frasse, Philip M. Jezewski, Andrew J. Kafai, Natasha M. Gandhi, Aakash Y. Erlinger, Samuel J. Odom John, Audrey R. Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title | Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title_full | Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title_fullStr | Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title_full_unstemmed | Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title_short | Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites |
title_sort | suppression of drug resistance reveals a genetic mechanism of metabolic plasticity in malaria parasites |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234871/ https://www.ncbi.nlm.nih.gov/pubmed/30425143 http://dx.doi.org/10.1128/mBio.01193-18 |
work_keys_str_mv | AT guggisbergannm suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT frassephilipm suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT jezewskiandrewj suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT kafainatasham suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT gandhiaakashy suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT erlingersamuelj suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites AT odomjohnaudreyr suppressionofdrugresistancerevealsageneticmechanismofmetabolicplasticityinmalariaparasites |