Cargando…

A 5′-BODIPY End-label for Monitoring DNA Duplex-Quadruplex Exchange

Fluorescent probes that can distinguish different DNA topologies through changes in optical readout are sought after for DNA-based diagnostics. In this work, the 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) chromophore attached to cyanophenyl substituents (BODIPY-CN) has been tethered to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Deore, Prashant S., Soldatov, Dmitriy V., Manderville, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237993/
https://www.ncbi.nlm.nih.gov/pubmed/30442930
http://dx.doi.org/10.1038/s41598-018-35352-0
Descripción
Sumario:Fluorescent probes that can distinguish different DNA topologies through changes in optical readout are sought after for DNA-based diagnostics. In this work, the 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) chromophore attached to cyanophenyl substituents (BODIPY-CN) has been tethered to the 5′-end of the 15-mer thrombin binding aptamer (TBA) that contains the guanine (G) nucleobase. TBA folds into a unimolecular antiparallel G-quadruplex (GQ) upon binding thrombin and certain metal ions. The 5′-BODIPY-CN-TBA sample possesses a Stokes shift of ~40 nm with wavelengths of excitation/emission at 550/590 nm and exhibits a 2-fold increase in emission intensity compared to the free BODIPY-CN in aqueous buffer that possesses a brightness (εΦ(fl)) of ~16,956 M(−1). cm(−1). However, when 5′-BODIPY-CN-TBA is base-paired to a complementary strand in the B-form duplex, the emission of the BODIPY-CN end-label increases 7-fold, 14-fold compared to the free-dye. This signal-on response enables the BODIPY-CN end-label to serve as a quencher-free fluorescent probe for monitoring duplex-GQ exchange. The visible end-label minimally perturbs GQ stability and thrombin binding affinity, and the modified TBA can act as a combinatorial logic circuit having INHIBIT logic functions. These attributes make BODIPY-CN a highly useful end-label for creating nanomolecular devices derived from G-rich oligonucleotides.