Cargando…
Computational analysis reveals histotype-dependent molecular profile and actionable mutation effects across cancers
BACKGROUND: Comprehensive mutational profiling data now available on all major cancers have led to proposals of novel molecular tumor classifications that modify or replace the established organ- and tissue-based tumor typing. The rationale behind such molecular reclassifications is that genetic alt...
Autores principales: | Heim, Daniel, Montavon, Grégoire, Hufnagl, Peter, Müller, Klaus-Robert, Klauschen, Frederick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238410/ https://www.ncbi.nlm.nih.gov/pubmed/30442178 http://dx.doi.org/10.1186/s13073-018-0591-9 |
Ejemplares similares
-
Patient-level proteomic network prediction by explainable artificial intelligence
por: Keyl, Philipp, et al.
Publicado: (2022) -
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
An Assessment of Ovarian Cancer Histotypes Across the African Diaspora
por: George, Sophia H. L., et al.
Publicado: (2021) -
Neural networks
por: Montavon, Grégoire, et al.
Publicado: (2012) -
Single-cell gene regulatory network prediction by explainable AI
por: Keyl, Philipp, et al.
Publicado: (2023)