Cargando…

Drug-induced expression of EpCAM contributes to therapy resistance in esophageal adenocarcinoma

BACKGROUND: With a less than 5% overall survival rate, esophageal adenocarcinoma (EAC) is one of the leading causes of death in the United States. Epithelial cell adhesion molecule (EpCAM) is a cancer stem cell (CSC) marker that is expressed in various epithelial carcinomas, including EAC. Accumulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xuan, Martin, Robert C. G., Zheng, Qianqian, Farmer, Russell, Pandit, Harshul, Li, Xuanyi, Jacob, Kevin, Suo, Jian, Li, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244739/
https://www.ncbi.nlm.nih.gov/pubmed/30116994
http://dx.doi.org/10.1007/s13402-018-0399-z
Descripción
Sumario:BACKGROUND: With a less than 5% overall survival rate, esophageal adenocarcinoma (EAC) is one of the leading causes of death in the United States. Epithelial cell adhesion molecule (EpCAM) is a cancer stem cell (CSC) marker that is expressed in various epithelial carcinomas, including EAC. Accumulating evidence indicates that CSC subpopulations can initiate cancer development and, in addition, drive metastasis, recurrence and drug resistance. It has also been reported that EpCAM up-regulation in EAC may lead to an aggressive behavior and, thus, an adverse clinical outcome. Here, we aimed to determine whether treatment with standard chemotherapeutic agents may induce EpCAM expression and, concomitantly, increases in malignant potential and drug resistance in EAC. METHODS: EpCAM expression was assessed in 20 primary human EAC/adjacent normal tissues, as well as in a human EAC-derived cell line (OE-19), in a pre-malignant Barrett’s Esophagus cell line (Bar-T) and in a benign esophageal cell line (HET 1-A), using immunohistochemistry, Western blotting and qRT-PCR, respectively. Drug-induced resistance was investigated in OE-19-derived spheres treated with (a combination of) adriamycin, cisplatin and 5-fluorouracil (ACF) using survival, adhesion and flow cytometric assays, respectively, and compared to drug resistance induced by standard chemotherapeutic agents (CTA). Finally, ACF treatment-surviving cells were evaluated for their tumor forming capacities both in vitro and in vivo using spheroid formation and xenograft assays, respectively. RESULTS: High EpCAM expression was observed in esophageal cancer tissues and esophageal cancer-derived cell lines, but not in adjacent benign esophageal epithelia and benign esophageal cell lines (HET 1-A and Bar-T). The OE-19 cell spheres were drug resistant and EpCAM expression was significantly induced in the OE-19 cell spheres compared to the non-sphere OE-19 cells. When OE-19 cell spheres were challenged with ACF, the EpCAM mRNA and protein levels were further up-regulated up to 48 h, whereas a decreased EpCAM expression was observed at 72 h. EpCAM down-regulation by RNA interference increased the ACF efficacy to kill OE-19 cells. Increased EpCAM expression coincided with the CSC marker CD90 and was associated with an aggressive growth pattern of OE-19 cell spheres in vivo. CONCLUSIONS: From our data we conclude that an ACF-induced increase in EpCAM expression reflects the selection of a CSC subpopulation that underlies tumor development and drug resistance in EAC.