Cargando…

Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues

Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but thought to be primarily diet-derived. Here we demonstrate that mmBCFAs are de novo synt...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallace, Martina, Green, Courtney R., Roberts, Lindsay S., Lee, Yujung Michelle, McCarville, Justin L., Sanchez-Gurmaches, Joan, Meurs, Noah, Gengatharan, Jivani M., Hover, Justin D., Phillips, Susan A., Ciaraldi, Theodore P., Guertin, David A., Cabrales, Pedro, Ayres, Janelle S., Nomura, Daniel K., Loomba, Rohit, Metallo, Christian M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245668/
https://www.ncbi.nlm.nih.gov/pubmed/30327559
http://dx.doi.org/10.1038/s41589-018-0132-2
_version_ 1783372280896684032
author Wallace, Martina
Green, Courtney R.
Roberts, Lindsay S.
Lee, Yujung Michelle
McCarville, Justin L.
Sanchez-Gurmaches, Joan
Meurs, Noah
Gengatharan, Jivani M.
Hover, Justin D.
Phillips, Susan A.
Ciaraldi, Theodore P.
Guertin, David A.
Cabrales, Pedro
Ayres, Janelle S.
Nomura, Daniel K.
Loomba, Rohit
Metallo, Christian M.
author_facet Wallace, Martina
Green, Courtney R.
Roberts, Lindsay S.
Lee, Yujung Michelle
McCarville, Justin L.
Sanchez-Gurmaches, Joan
Meurs, Noah
Gengatharan, Jivani M.
Hover, Justin D.
Phillips, Susan A.
Ciaraldi, Theodore P.
Guertin, David A.
Cabrales, Pedro
Ayres, Janelle S.
Nomura, Daniel K.
Loomba, Rohit
Metallo, Christian M.
author_sort Wallace, Martina
collection PubMed
description Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but thought to be primarily diet-derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity that influence acyl-chain diversity in the lipidome.
format Online
Article
Text
id pubmed-6245668
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-62456682019-04-16 Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues Wallace, Martina Green, Courtney R. Roberts, Lindsay S. Lee, Yujung Michelle McCarville, Justin L. Sanchez-Gurmaches, Joan Meurs, Noah Gengatharan, Jivani M. Hover, Justin D. Phillips, Susan A. Ciaraldi, Theodore P. Guertin, David A. Cabrales, Pedro Ayres, Janelle S. Nomura, Daniel K. Loomba, Rohit Metallo, Christian M. Nat Chem Biol Article Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but thought to be primarily diet-derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity that influence acyl-chain diversity in the lipidome. 2018-10-16 2018-11 /pmc/articles/PMC6245668/ /pubmed/30327559 http://dx.doi.org/10.1038/s41589-018-0132-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Wallace, Martina
Green, Courtney R.
Roberts, Lindsay S.
Lee, Yujung Michelle
McCarville, Justin L.
Sanchez-Gurmaches, Joan
Meurs, Noah
Gengatharan, Jivani M.
Hover, Justin D.
Phillips, Susan A.
Ciaraldi, Theodore P.
Guertin, David A.
Cabrales, Pedro
Ayres, Janelle S.
Nomura, Daniel K.
Loomba, Rohit
Metallo, Christian M.
Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title_full Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title_fullStr Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title_full_unstemmed Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title_short Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
title_sort enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245668/
https://www.ncbi.nlm.nih.gov/pubmed/30327559
http://dx.doi.org/10.1038/s41589-018-0132-2
work_keys_str_mv AT wallacemartina enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT greencourtneyr enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT robertslindsays enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT leeyujungmichelle enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT mccarvillejustinl enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT sanchezgurmachesjoan enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT meursnoah enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT gengatharanjivanim enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT hoverjustind enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT phillipssusana enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT ciaralditheodorep enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT guertindavida enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT cabralespedro enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT ayresjanelles enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT nomuradanielk enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT loombarohit enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues
AT metallochristianm enzymepromiscuitydrivesbranchedchainfattyacidsynthesisinadiposetissues