Cargando…
Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer
Hydrogenated graphene (HG)/hexagonal boron nitride (h-BN) heterobilayer is an ideal structure for the high-performance field effect transistor. In this paper, the carrier mobilities of HG/h-BN heterobilayer are investigated based on the first-principles calculations by considering the influence of s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250606/ https://www.ncbi.nlm.nih.gov/pubmed/30467605 http://dx.doi.org/10.1186/s11671-018-2780-2 |
_version_ | 1783372942898364416 |
---|---|
author | Ye, Zhenqiang Geng, Hua Zheng, Xiaoping |
author_facet | Ye, Zhenqiang Geng, Hua Zheng, Xiaoping |
author_sort | Ye, Zhenqiang |
collection | PubMed |
description | Hydrogenated graphene (HG)/hexagonal boron nitride (h-BN) heterobilayer is an ideal structure for the high-performance field effect transistor. In this paper, the carrier mobilities of HG/h-BN heterobilayer are investigated based on the first-principles calculations by considering the influence of stacking pattern between HG and h-BN, hydrogen coverage and hydrogenation pattern. With the same hydrogenation pattern, the electron mobility monotonously decreases when the hydrogen coverage increases. With the same hydrogen coverage, different hydrogenation patterns lead to significant changes of mobility. For 25% and 6.25% HGs, the μ(e) (ΓK) of 25% pattern I is 8985.85 cm(2)/(V s) and of 6.25% pattern I is 23,470.98 cm(2)/(V s), which are much higher than other patterns. Meanwhile, the h-BN substrate affects the hole mobilities significantly, but it has limit influences on the electron mobilities. The hole mobilities of stacking patterns I and II are close to that of HG monolayer, but much lower than that of stacking patterns III and IV. |
format | Online Article Text |
id | pubmed-6250606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-62506062018-12-06 Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer Ye, Zhenqiang Geng, Hua Zheng, Xiaoping Nanoscale Res Lett Nano Express Hydrogenated graphene (HG)/hexagonal boron nitride (h-BN) heterobilayer is an ideal structure for the high-performance field effect transistor. In this paper, the carrier mobilities of HG/h-BN heterobilayer are investigated based on the first-principles calculations by considering the influence of stacking pattern between HG and h-BN, hydrogen coverage and hydrogenation pattern. With the same hydrogenation pattern, the electron mobility monotonously decreases when the hydrogen coverage increases. With the same hydrogen coverage, different hydrogenation patterns lead to significant changes of mobility. For 25% and 6.25% HGs, the μ(e) (ΓK) of 25% pattern I is 8985.85 cm(2)/(V s) and of 6.25% pattern I is 23,470.98 cm(2)/(V s), which are much higher than other patterns. Meanwhile, the h-BN substrate affects the hole mobilities significantly, but it has limit influences on the electron mobilities. The hole mobilities of stacking patterns I and II are close to that of HG monolayer, but much lower than that of stacking patterns III and IV. Springer US 2018-11-22 /pmc/articles/PMC6250606/ /pubmed/30467605 http://dx.doi.org/10.1186/s11671-018-2780-2 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Nano Express Ye, Zhenqiang Geng, Hua Zheng, Xiaoping Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title | Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title_full | Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title_fullStr | Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title_full_unstemmed | Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title_short | Theoretical Study on Carrier Mobility of Hydrogenated Graphene/Hexagonal Boron-Nitride Heterobilayer |
title_sort | theoretical study on carrier mobility of hydrogenated graphene/hexagonal boron-nitride heterobilayer |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250606/ https://www.ncbi.nlm.nih.gov/pubmed/30467605 http://dx.doi.org/10.1186/s11671-018-2780-2 |
work_keys_str_mv | AT yezhenqiang theoreticalstudyoncarriermobilityofhydrogenatedgraphenehexagonalboronnitrideheterobilayer AT genghua theoreticalstudyoncarriermobilityofhydrogenatedgraphenehexagonalboronnitrideheterobilayer AT zhengxiaoping theoreticalstudyoncarriermobilityofhydrogenatedgraphenehexagonalboronnitrideheterobilayer |