Cargando…
Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype
The memory requirement of deep learning algorithms is considered incompatible with the memory restriction of energy-efficient hardware. A low memory footprint can be achieved by pruning obsolete connections or reducing the precision of connection strengths after the network has been trained. Yet, th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250847/ https://www.ncbi.nlm.nih.gov/pubmed/30505263 http://dx.doi.org/10.3389/fnins.2018.00840 |