Cargando…
Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype
The memory requirement of deep learning algorithms is considered incompatible with the memory restriction of energy-efficient hardware. A low memory footprint can be achieved by pruning obsolete connections or reducing the precision of connection strengths after the network has been trained. Yet, th...
Autores principales: | Liu, Chen, Bellec, Guillaume, Vogginger, Bernhard, Kappel, David, Partzsch, Johannes, Neumärker, Felix, Höppner, Sebastian, Maass, Wolfgang, Furber, Steve B., Legenstein, Robert, Mayr, Christian G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250847/ https://www.ncbi.nlm.nih.gov/pubmed/30505263 http://dx.doi.org/10.3389/fnins.2018.00840 |
Ejemplares similares
-
SpiNNaker2 - Neuromorphic computing
por: Mayr, Christian
Publicado: (2022) -
SpiNNTools: The Execution Engine for the SpiNNaker Platform
por: Rowley, Andrew G. D., et al.
Publicado: (2019) -
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
por: Mikaitis, Mantas, et al.
Publicado: (2018) -
Efficient SNN multi-cores MAC array acceleration on SpiNNaker 2
por: Huang, Jiaxin, et al.
Publicado: (2023) -
E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware
por: Rostami, Amirhossein, et al.
Publicado: (2022)