Cargando…

Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p

Paclitaxel is a first-line chemotherapeutic agent for gastric cancer; however, resistance limits its effectiveness. Investigation into the underlying mechanisms of paclitaxel resistance is urgently required. In the present study, a paclitaxel-resistant gastric cancer cell line (MGC-803R) was generat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mei, Qiu, Rong, Yu, Shaorong, Xu, Xiaoyue, Li, Gang, Gu, Rongmin, Tan, Caihong, Zhu, Wei, Shen, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254863/
https://www.ncbi.nlm.nih.gov/pubmed/30365045
http://dx.doi.org/10.3892/ijo.2018.4601
Descripción
Sumario:Paclitaxel is a first-line chemotherapeutic agent for gastric cancer; however, resistance limits its effectiveness. Investigation into the underlying mechanisms of paclitaxel resistance is urgently required. In the present study, a paclitaxel-resistant gastric cancer cell line (MGC-803R) was generated with a morphological phenotype of epithelial-to-mesenchymal transition (EMT) and increased expression levels of microRNA (miR)-155-5p. MGC-803R cell-derived exosomes were effectively taken up by paclitaxel-sensitive MGC-803S cells, which exhibited EMT and chemoresistance phenotypes. miR-155-5p was enriched in MGC-803R-exosomes and could be delivered into MGC-803S cells. miR-155-5p overexpression in MGC-803S cells via transfection with mimics resulted in similar phenotypic effects as treatment with MGC-803R exosome and increased miR-155-5p content in MGC-803S exosomes, which then capable of inducing the malignant phenotype in the sensitive cells. GATA binding protein 3 (GATA3) and tumor protein p53-inducible nuclear protein 1 (TP53INP1) were identified as targets of miR-155-5p. Exosomal miR-155-5p inhibited these targets by directly targeting their 3′ untranslated regions. Knockdown of miR-155-5p was observed to reverse the EMT and chemoresistant phenotypes of MGC-803R cells, potentially via GATA3 and TP53INP1 upregulation, which inhibited MGC-803R-exosomes from inducing the malignant phenotype. These results demonstrated that exosomal delivery of miR-155-5p may induce EMT and chemoresistant phenotypes from paclitaxel-resistant gastric cancer cells to the sensitive cells, which may be mediated by GATA3 and TP53INP1 suppression. Targeting miR-155-5p may thus be a promising strategy to overcome paclitaxel resistance in gastric cancer.