Cargando…
Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer
BACKGROUND: Cancer-associated fibroblasts (CAFs) are activated fibroblasts associated with cancer. They have an important role in tumor growth and metastasis. Artemisinin (ART) is a sesquiterpene lactone extracted from Chinese herb qinghao, and artemether (ARM), artesunate (ARS) and dihydroartemisin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258160/ https://www.ncbi.nlm.nih.gov/pubmed/30477536 http://dx.doi.org/10.1186/s13046-018-0960-7 |
Sumario: | BACKGROUND: Cancer-associated fibroblasts (CAFs) are activated fibroblasts associated with cancer. They have an important role in tumor growth and metastasis. Artemisinin (ART) is a sesquiterpene lactone extracted from Chinese herb qinghao, and artemether (ARM), artesunate (ARS) and dihydroartemisinin (DHA) were synthesized derivatives of artemisinin, which also have anti-malarial and anti-cancer effects such as artemisinin. METHODS: In this study, we investigated the in-vitro and in-vivo effects of artemisinin derivatives on inactivating cancer-associated fibroblasts and uncovered its underlying mechanism. RESULTS: We demonstrated that ARS and DHA could revert L-929-CAFs and CAFs from activated to inactivated state in vitro. Mechanically, ARS and DHA could suppress TGF-β signaling to inhibit activation of L-929-CAFs and CAFs, and decreased interaction between tumor and tumor microenvironment. The results showed that ARS and DHA could suppress CAFs-induced breast cancer growth and metastasis in the orthotopic model. Conformably, ARS and DHA suppressed TGF-β signaling to inactivate cancer-associated fibroblasts and inhibit cancer metastasis in vivo. CONCLUSIONS: Artemisinin derivatives are potential therapeutic agents for the treatment of breast cancer. |
---|