Cargando…

Design, Synthesis and Biological Activity Evaluation of Arylpiperazine Derivatives for the Treatment of Neuropathic Pain

In this work, a series of arylpiperazine derivatives were synthesized and screened by in vivo pharmacological trials. Among the tested compounds, 2-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)-1-phenylethanone (18) and 2-(4-(2,3-dimethylphenyl)piperazin-1-yl)-1-phenylethanone (19) exhibited potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yin, Wang, Guan, Xu, Xiangqing, Liu, Bi-Feng, Li, Jianqi, Zhang, Guisen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264349/
https://www.ncbi.nlm.nih.gov/pubmed/21738106
http://dx.doi.org/10.3390/molecules16075785
Descripción
Sumario:In this work, a series of arylpiperazine derivatives were synthesized and screened by in vivo pharmacological trials. Among the tested compounds, 2-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)-1-phenylethanone (18) and 2-(4-(2,3-dimethylphenyl)piperazin-1-yl)-1-phenylethanone (19) exhibited potent analgesic activities in both the mice writhing and mice hot plate tests. They showed more than 70% inhibition relative to controls in the writhing test, and increased latency by 116.0% and 134.4%, respectively, in the hot plate test. Furthermore, compound 18 was also active in the models of formalin pain and neuropathic pain without sedative side effects.