Cargando…
Hercules: a profile HMM-based hybrid error correction algorithm for long reads
Choosing whether to use second or third generation sequencing platforms can lead to trade-offs between accuracy and read length. Several types of studies require long and accurate reads. In such cases researchers often combine both technologies and the erroneous long reads are corrected using the sh...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265270/ https://www.ncbi.nlm.nih.gov/pubmed/30124947 http://dx.doi.org/10.1093/nar/gky724 |
_version_ | 1783375605295742976 |
---|---|
author | Firtina, Can Bar-Joseph, Ziv Alkan, Can Cicek, A Ercument |
author_facet | Firtina, Can Bar-Joseph, Ziv Alkan, Can Cicek, A Ercument |
author_sort | Firtina, Can |
collection | PubMed |
description | Choosing whether to use second or third generation sequencing platforms can lead to trade-offs between accuracy and read length. Several types of studies require long and accurate reads. In such cases researchers often combine both technologies and the erroneous long reads are corrected using the short reads. Current approaches rely on various graph or alignment based techniques and do not take the error profile of the underlying technology into account. Efficient machine learning algorithms that address these shortcomings have the potential to achieve more accurate integration of these two technologies. We propose Hercules, the first machine learning-based long read error correction algorithm. Hercules models every long read as a profile Hidden Markov Model with respect to the underlying platform’s error profile. The algorithm learns a posterior transition/emission probability distribution for each long read to correct errors in these reads. We show on two DNA-seq BAC clones (CH17-157L1 and CH17-227A2) that Hercules-corrected reads have the highest mapping rate among all competing algorithms and have the highest accuracy when the breadth of coverage is high. On a large human CHM1 cell line WGS data set, Hercules is one of the few scalable algorithms; and among those, it achieves the highest accuracy. |
format | Online Article Text |
id | pubmed-6265270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-62652702018-12-04 Hercules: a profile HMM-based hybrid error correction algorithm for long reads Firtina, Can Bar-Joseph, Ziv Alkan, Can Cicek, A Ercument Nucleic Acids Res Methods Online Choosing whether to use second or third generation sequencing platforms can lead to trade-offs between accuracy and read length. Several types of studies require long and accurate reads. In such cases researchers often combine both technologies and the erroneous long reads are corrected using the short reads. Current approaches rely on various graph or alignment based techniques and do not take the error profile of the underlying technology into account. Efficient machine learning algorithms that address these shortcomings have the potential to achieve more accurate integration of these two technologies. We propose Hercules, the first machine learning-based long read error correction algorithm. Hercules models every long read as a profile Hidden Markov Model with respect to the underlying platform’s error profile. The algorithm learns a posterior transition/emission probability distribution for each long read to correct errors in these reads. We show on two DNA-seq BAC clones (CH17-157L1 and CH17-227A2) that Hercules-corrected reads have the highest mapping rate among all competing algorithms and have the highest accuracy when the breadth of coverage is high. On a large human CHM1 cell line WGS data set, Hercules is one of the few scalable algorithms; and among those, it achieves the highest accuracy. Oxford University Press 2018-11-30 2018-08-16 /pmc/articles/PMC6265270/ /pubmed/30124947 http://dx.doi.org/10.1093/nar/gky724 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Methods Online Firtina, Can Bar-Joseph, Ziv Alkan, Can Cicek, A Ercument Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title | Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title_full | Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title_fullStr | Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title_full_unstemmed | Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title_short | Hercules: a profile HMM-based hybrid error correction algorithm for long reads |
title_sort | hercules: a profile hmm-based hybrid error correction algorithm for long reads |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265270/ https://www.ncbi.nlm.nih.gov/pubmed/30124947 http://dx.doi.org/10.1093/nar/gky724 |
work_keys_str_mv | AT firtinacan herculesaprofilehmmbasedhybriderrorcorrectionalgorithmforlongreads AT barjosephziv herculesaprofilehmmbasedhybriderrorcorrectionalgorithmforlongreads AT alkancan herculesaprofilehmmbasedhybriderrorcorrectionalgorithmforlongreads AT cicekaercument herculesaprofilehmmbasedhybriderrorcorrectionalgorithmforlongreads |