Cargando…

Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion

Almond is consumed worldwide and renowned as a valuable healthy food. Despite this, it is also a potent source of allergenic proteins that can trigger several mild to life-threatening immunoreactions. Food processing proved to alter biochemical characteristics of proteins, thus affecting the respect...

Descripción completa

Detalles Bibliográficos
Autores principales: De Angelis, Elisabetta, Bavaro, Simona L., Forte, Graziana, Pilolli, Rosa, Monaci, Linda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265937/
https://www.ncbi.nlm.nih.gov/pubmed/30400601
http://dx.doi.org/10.3390/nu10111679
_version_ 1783375728417439744
author De Angelis, Elisabetta
Bavaro, Simona L.
Forte, Graziana
Pilolli, Rosa
Monaci, Linda
author_facet De Angelis, Elisabetta
Bavaro, Simona L.
Forte, Graziana
Pilolli, Rosa
Monaci, Linda
author_sort De Angelis, Elisabetta
collection PubMed
description Almond is consumed worldwide and renowned as a valuable healthy food. Despite this, it is also a potent source of allergenic proteins that can trigger several mild to life-threatening immunoreactions. Food processing proved to alter biochemical characteristics of proteins, thus affecting the respective allergenicity. In this paper, we investigated the effect of autoclaving, preceded or not by a hydration step, on the biochemical and immunological properties of almond proteins. Any variation in the stability and immunoreactivity of almond proteins extracted from the treated materials were evaluated by total protein quantification, Enzyme Linked Immunosorbent Assay (ELISA), and protein profiling by electrophoresis-based separation (SDS-PAGE). The sole autoclaving applied was found to weakly affect almond protein stability, despite what was observed when hydration preceded autoclaving, which resulted in a loss of approximately 70% of total protein content compared to untreated samples, and a remarkable reduction of the final immunoreactivity. The final SDS-PAGE protein pattern recorded for hydrated and autoclaved almonds disclosed significant changes. In addition, the same samples were further submitted to human-simulated gastro-intestinal (GI) digestion to evaluate potential changes induced by these processing methods on allergen digestibility. Digestion products were identified by High Pressure Liquid Chromatography-High Resolution Tandem Mass Spectrometry (HPLC-HRMS/MS) analysis followed by software-based data mining, and complementary information was provided by analyzing the proteolytic fragments lower than 6 kDa in size. The autoclave-based treatment was found not to alter the allergen digestibility, whereas an increased susceptibility to proteolytic action of digestive enzymes was observed in almonds subjected to autoclaving of prehydrated almond kernels. Finally, the residual immunoreactivity of the GI-resistant peptides was in-silico investigated by bioinformatic tools. Results obtained confirm that by adopting both approaches, no epitopes associated with known allergens survived, thus demonstrating the potential effectiveness of these treatments to reduce almond allergenicity.
format Online
Article
Text
id pubmed-6265937
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62659372018-12-06 Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion De Angelis, Elisabetta Bavaro, Simona L. Forte, Graziana Pilolli, Rosa Monaci, Linda Nutrients Article Almond is consumed worldwide and renowned as a valuable healthy food. Despite this, it is also a potent source of allergenic proteins that can trigger several mild to life-threatening immunoreactions. Food processing proved to alter biochemical characteristics of proteins, thus affecting the respective allergenicity. In this paper, we investigated the effect of autoclaving, preceded or not by a hydration step, on the biochemical and immunological properties of almond proteins. Any variation in the stability and immunoreactivity of almond proteins extracted from the treated materials were evaluated by total protein quantification, Enzyme Linked Immunosorbent Assay (ELISA), and protein profiling by electrophoresis-based separation (SDS-PAGE). The sole autoclaving applied was found to weakly affect almond protein stability, despite what was observed when hydration preceded autoclaving, which resulted in a loss of approximately 70% of total protein content compared to untreated samples, and a remarkable reduction of the final immunoreactivity. The final SDS-PAGE protein pattern recorded for hydrated and autoclaved almonds disclosed significant changes. In addition, the same samples were further submitted to human-simulated gastro-intestinal (GI) digestion to evaluate potential changes induced by these processing methods on allergen digestibility. Digestion products were identified by High Pressure Liquid Chromatography-High Resolution Tandem Mass Spectrometry (HPLC-HRMS/MS) analysis followed by software-based data mining, and complementary information was provided by analyzing the proteolytic fragments lower than 6 kDa in size. The autoclave-based treatment was found not to alter the allergen digestibility, whereas an increased susceptibility to proteolytic action of digestive enzymes was observed in almonds subjected to autoclaving of prehydrated almond kernels. Finally, the residual immunoreactivity of the GI-resistant peptides was in-silico investigated by bioinformatic tools. Results obtained confirm that by adopting both approaches, no epitopes associated with known allergens survived, thus demonstrating the potential effectiveness of these treatments to reduce almond allergenicity. MDPI 2018-11-05 /pmc/articles/PMC6265937/ /pubmed/30400601 http://dx.doi.org/10.3390/nu10111679 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
De Angelis, Elisabetta
Bavaro, Simona L.
Forte, Graziana
Pilolli, Rosa
Monaci, Linda
Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title_full Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title_fullStr Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title_full_unstemmed Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title_short Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion
title_sort heat and pressure treatments on almond protein stability and change in immunoreactivity after simulated human digestion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265937/
https://www.ncbi.nlm.nih.gov/pubmed/30400601
http://dx.doi.org/10.3390/nu10111679
work_keys_str_mv AT deangeliselisabetta heatandpressuretreatmentsonalmondproteinstabilityandchangeinimmunoreactivityaftersimulatedhumandigestion
AT bavarosimonal heatandpressuretreatmentsonalmondproteinstabilityandchangeinimmunoreactivityaftersimulatedhumandigestion
AT fortegraziana heatandpressuretreatmentsonalmondproteinstabilityandchangeinimmunoreactivityaftersimulatedhumandigestion
AT pilollirosa heatandpressuretreatmentsonalmondproteinstabilityandchangeinimmunoreactivityaftersimulatedhumandigestion
AT monacilinda heatandpressuretreatmentsonalmondproteinstabilityandchangeinimmunoreactivityaftersimulatedhumandigestion