Cargando…
Protection of Astaxanthin in Astaxanthin Nanodispersions Using Additional Antioxidants
The protective effects of α-tocopherol and ascorbic acid on astaxanthin in astaxanthin nanodispersions produced via a solvent-diffusion technique and stabilized by a three-component stabilizer system, were studied either individually or in combination by using response surface methodology. Generally...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269832/ https://www.ncbi.nlm.nih.gov/pubmed/23884122 http://dx.doi.org/10.3390/molecules18077699 |
Sumario: | The protective effects of α-tocopherol and ascorbic acid on astaxanthin in astaxanthin nanodispersions produced via a solvent-diffusion technique and stabilized by a three-component stabilizer system, were studied either individually or in combination by using response surface methodology. Generally, both α-tocopherol and ascorbic acid could retard the astaxanthin degradation in astaxanthin nanodispersions. The results showed that the using α-tocopherol and ascorbic acid can be more efficient in increasing the chemical stability of nanodispersions in comparison to using them individually. Using a response surface methodology (RSM) response optimizer, it was seen that addition of ascorbic acid (ascorbic acid/astaxanthin w/w) and α-tocopherol (α-tocopherol/astaxanthin w/w) in proportions of 0.4 and 0.6, respectively, would give the maximum chemical stability to the studied astaxanthin nanodispersions. |
---|