Cargando…
Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins
In this paper, we present a novel, “single experiment” methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthes...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271081/ https://www.ncbi.nlm.nih.gov/pubmed/24434673 http://dx.doi.org/10.3390/molecules19011004 |
Sumario: | In this paper, we present a novel, “single experiment” methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of l-azidohomoalanine from O-acetyl-l-homoserine and NaN(3), and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in a methionine-auxotroph E. coli strain. In our system, the host’s methionine biosynthetic pathway was first diverted towards the production of the desired non-canonical amino acid by exploiting the broad reaction specificity of recombinant pyridoxal phosphate-dependent O-acetylhomoserine sulfhydrylase from Corynebacterium glutamicum. Then, the expression of the target protein barstar, accompanied with efficient l-azidohomoalanine incorporation in place of l-methionine, was accomplished. This work stands as proof-of-principle and paves the way for additional work towards intracellular production and site-specific incorporation of biotechnologically relevant non-canonical amino acids directly from common fermentable sources. |
---|