Cargando…

Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters

The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode. The endoperoxide reacts by a concerted dissociative ET mechanism resulting in reduction of the O-O bon...

Descripción completa

Detalles Bibliográficos
Autores principales: Magri, David C., Workentin, Mark S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271848/
https://www.ncbi.nlm.nih.gov/pubmed/25116807
http://dx.doi.org/10.3390/molecules190811999
_version_ 1783377021834887168
author Magri, David C.
Workentin, Mark S.
author_facet Magri, David C.
Workentin, Mark S.
author_sort Magri, David C.
collection PubMed
description The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode. The endoperoxide reacts by a concerted dissociative ET mechanism resulting in reduction of the O-O bond with an observed peak potential of −1.4 V at 0.2 V s(−1). The major product (90% yield) resulting from the heterogeneous bulk electrolysis of 4 at −1.4 V with a rotating disk glassy carbon electrode is 1,4-diphenyl-cyclopent-2-ene-cis-1,3-diol with a consumption of 1.73 electrons per mole. In contrast, 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]oct-5-ene (1), undergoes a two-electron reduction mechanism in quantitative yield. This difference in product yield between 1 and 4 is suggestive of a radical-anion mechanism, as observed with 1,4-diphenyl-2,3-dioxabicyclo-[2.2.2] octane (2) and 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]heptane (3). Convolution potential sweep voltammetry is used to determine unknown thermochemical parameters of 4, including the O-O bond dissociation energy and the standard reduction potential and a comparison is made to the previously studied bicyclic endoperoxides 1–3 with respect to the effect of molecular structure on the reactivity of distonic radical anions.
format Online
Article
Text
id pubmed-6271848
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62718482018-12-27 Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters Magri, David C. Workentin, Mark S. Molecules Article The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode. The endoperoxide reacts by a concerted dissociative ET mechanism resulting in reduction of the O-O bond with an observed peak potential of −1.4 V at 0.2 V s(−1). The major product (90% yield) resulting from the heterogeneous bulk electrolysis of 4 at −1.4 V with a rotating disk glassy carbon electrode is 1,4-diphenyl-cyclopent-2-ene-cis-1,3-diol with a consumption of 1.73 electrons per mole. In contrast, 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]oct-5-ene (1), undergoes a two-electron reduction mechanism in quantitative yield. This difference in product yield between 1 and 4 is suggestive of a radical-anion mechanism, as observed with 1,4-diphenyl-2,3-dioxabicyclo-[2.2.2] octane (2) and 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]heptane (3). Convolution potential sweep voltammetry is used to determine unknown thermochemical parameters of 4, including the O-O bond dissociation energy and the standard reduction potential and a comparison is made to the previously studied bicyclic endoperoxides 1–3 with respect to the effect of molecular structure on the reactivity of distonic radical anions. MDPI 2014-08-11 /pmc/articles/PMC6271848/ /pubmed/25116807 http://dx.doi.org/10.3390/molecules190811999 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Magri, David C.
Workentin, Mark S.
Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title_full Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title_fullStr Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title_full_unstemmed Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title_short Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
title_sort dissociative electron transfer to diphenyl-substituted bicyclic endoperoxides: the effect of molecular structure on the reactivity of distonic radical anions and determination of thermochemical parameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271848/
https://www.ncbi.nlm.nih.gov/pubmed/25116807
http://dx.doi.org/10.3390/molecules190811999
work_keys_str_mv AT magridavidc dissociativeelectrontransfertodiphenylsubstitutedbicyclicendoperoxidestheeffectofmolecularstructureonthereactivityofdistonicradicalanionsanddeterminationofthermochemicalparameters
AT workentinmarks dissociativeelectrontransfertodiphenylsubstitutedbicyclicendoperoxidestheeffectofmolecularstructureonthereactivityofdistonicradicalanionsanddeterminationofthermochemicalparameters