Cargando…

Synthesis and QSAR Study of Novel 6-Chloro-3-(2-Arylmethylene-1-methylhydrazino)-1,4,2-benzodithiazine 1,1-Dioxide Derivatives with Anticancer Activity

A series of new 6-chloro-3-(2-arylmethylene-1-methylhydrazino)-1,4,2-benzodithiazine 1,1-dioxide derivatives were effectively synthesized from N-methyl-N-(6-chloro-1,1-dioxo-1,4,2-benzodithiazin-3-yl)hydrazines. The intermediate compounds as well as the products, were evaluated for their cytotoxic e...

Descripción completa

Detalles Bibliográficos
Autores principales: Sławiński, Jarosław, Żołnowska, Beata, Brzozowski, Zdzisław, Kawiak, Anna, Belka, Mariusz, Bączek, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272346/
https://www.ncbi.nlm.nih.gov/pubmed/25834988
http://dx.doi.org/10.3390/molecules20045754
Descripción
Sumario:A series of new 6-chloro-3-(2-arylmethylene-1-methylhydrazino)-1,4,2-benzodithiazine 1,1-dioxide derivatives were effectively synthesized from N-methyl-N-(6-chloro-1,1-dioxo-1,4,2-benzodithiazin-3-yl)hydrazines. The intermediate compounds as well as the products, were evaluated for their cytotoxic effects toward three human cancer cell lines. All compounds shown moderate or weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compound 16 exhibited the most potent cytotoxic activity against the HeLa cell line, with an IC(50) value of 10 µM, while 14 was the most active against the MCF-7 and HCT-116 cell lines, affording IC(50) values of 15 µM and 16 µM, respectively. The structure-activity relationship was evaluated based on QSAR methodology. The QSAR MCF-7 model indicated that natural charge on carbon atom C13 and energy of highest occupied molecular orbital (HOMO) are highly involved in cytotoxic activity against MCF-7 cell line. The cytotoxic activity of compounds against HCT-116 cell line is dependent on natural charge on carbon atom C13 and electrostatic charge on nitrogen atom N10. The obtained QSAR models could provide guidelines for further development of novel anticancer agents.