Cargando…

Neferine Attenuates the Protein Level and Toxicity of Mutant Huntingtin in PC-12 Cells via Induction of Autophagy

Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington’s disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Vincent Kam Wai, Wu, An Guo, Wang, Jing Rong, Liu, Liang, Law, Betty Yuen-Kwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272412/
https://www.ncbi.nlm.nih.gov/pubmed/25699594
http://dx.doi.org/10.3390/molecules20033496
Descripción
Sumario:Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington’s disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or α-synuclein. Through the GFP-LC3 autophagy detection platform, we have identified neferine, isolated from the lotus seed embryo of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74) in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7)-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.