Cargando…
Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking
DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O(6) position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesiz...
Autores principales: | Sun, Guohui, Fan, Tengjiao, Zhang, Na, Ren, Ting, Zhao, Lijiao, Zhong, Rugang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273773/ https://www.ncbi.nlm.nih.gov/pubmed/27347909 http://dx.doi.org/10.3390/molecules21070823 |
Ejemplares similares
-
QSAR and Chemical Read-Across Analysis of 370 Potential MGMT Inactivators to Identify the Structural Features Influencing Inactivation Potency
por: Sun, Guohui, et al.
Publicado: (2023) -
QSAR and Classification Study on Prediction of Acute Oral Toxicity of N-Nitroso Compounds
por: Fan, Tengjiao, et al.
Publicado: (2018) -
Metabolic Activation and Carcinogenesis of Tobacco-Specific Nitrosamine N’-Nitrosonornicotine (NNN): A Density Function Theory and Molecular Docking Study
por: Fan, Tengjiao, et al.
Publicado: (2019) -
In Silico Prediction of O(6)-Methylguanine-DNA Methyltransferase Inhibitory Potency of Base Analogs with QSAR and Machine Learning Methods
por: Sun, Guohui, et al.
Publicado: (2018) -
Identification of Pharmacophoric Fragments of DYRK1A Inhibitors Using Machine Learning Classification Models
por: Bi, Mengzhou, et al.
Publicado: (2022)