Cargando…
New Oral Formulation and in Vitro Evaluation of Docetaxel-Loaded Nanomicelles
Intravenous administration of Taxotere(®) (a commercial form of docetaxel, DTX) leads to many problems such as hypersensitivity, hemolysis, cutaneous allergy, and patient refusal due to its prolonged injection. The oral absorption of DTX is very low due to its hydrophobic nature. The purpose of this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274371/ https://www.ncbi.nlm.nih.gov/pubmed/27657038 http://dx.doi.org/10.3390/molecules21091265 |
Sumario: | Intravenous administration of Taxotere(®) (a commercial form of docetaxel, DTX) leads to many problems such as hypersensitivity, hemolysis, cutaneous allergy, and patient refusal due to its prolonged injection. The oral absorption of DTX is very low due to its hydrophobic nature. The purpose of this study was to prepare and carry out an in vitro evaluation of DTX-loaded nanomicelles for oral administration in order to increase the oral delivery of DTX. Studied formulations were prepared with the two surfactants Tween 20 and Tween 80 and were characterized for their particle size, zeta potential, stability, encapsulation efficiency, stability studies in gastric fluid and intestinal fluid, toxicity studies in C26 colon carcinoma cell line, and cellular uptake. The prepared nanomicelles with particle size of around 14 nm and encapsulation efficiency of 99% were stable in gastric fluid and intestinal fluid for at least 6 h and IC50 decreased significantly after 72 h exposure compared to that of Taxotere(®). Nanomicelles increased the water solubility of DTX more than 1500 times (10 mg/mL in nanomicelles compared to 6 µg/mL in water). Results of this study reveal that the new formulation of DTX could be used for the oral delivery of DTX and merits further investigation. |
---|