Cargando…
V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporos...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276090/ https://www.ncbi.nlm.nih.gov/pubmed/30555553 http://dx.doi.org/10.7150/thno.28391 |
_version_ | 1783377945631391744 |
---|---|
author | Duan, Xiaohong Yang, Shaoqing Zhang, Lei Yang, Tielin |
author_facet | Duan, Xiaohong Yang, Shaoqing Zhang, Lei Yang, Tielin |
author_sort | Duan, Xiaohong |
collection | PubMed |
description | Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis. |
format | Online Article Text |
id | pubmed-6276090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-62760902018-12-14 V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis Duan, Xiaohong Yang, Shaoqing Zhang, Lei Yang, Tielin Theranostics Review Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis. Ivyspring International Publisher 2018-10-26 /pmc/articles/PMC6276090/ /pubmed/30555553 http://dx.doi.org/10.7150/thno.28391 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Review Duan, Xiaohong Yang, Shaoqing Zhang, Lei Yang, Tielin V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title | V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title_full | V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title_fullStr | V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title_full_unstemmed | V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title_short | V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis |
title_sort | v-atpases and osteoclasts: ambiguous future of v-atpases inhibitors in osteoporosis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276090/ https://www.ncbi.nlm.nih.gov/pubmed/30555553 http://dx.doi.org/10.7150/thno.28391 |
work_keys_str_mv | AT duanxiaohong vatpasesandosteoclastsambiguousfutureofvatpasesinhibitorsinosteoporosis AT yangshaoqing vatpasesandosteoclastsambiguousfutureofvatpasesinhibitorsinosteoporosis AT zhanglei vatpasesandosteoclastsambiguousfutureofvatpasesinhibitorsinosteoporosis AT yangtielin vatpasesandosteoclastsambiguousfutureofvatpasesinhibitorsinosteoporosis |