Cargando…
Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubyla...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279957/ https://www.ncbi.nlm.nih.gov/pubmed/30508698 http://dx.doi.org/10.1016/j.redox.2018.11.010 |
_version_ | 1783378577315594240 |
---|---|
author | Bramasole, L. Sinha, A. Gurevich, S. Radzinski, M. Klein, Y. Panat, N. Gefen, E. Rinaldi, T. Jimenez-Morales, D. Johnson, J. Krogan, N.J. Reis, N. Reichmann, D. Glickman, M.H. Pick, E. |
author_facet | Bramasole, L. Sinha, A. Gurevich, S. Radzinski, M. Klein, Y. Panat, N. Gefen, E. Rinaldi, T. Jimenez-Morales, D. Johnson, J. Krogan, N.J. Reis, N. Reichmann, D. Glickman, M.H. Pick, E. |
author_sort | Bramasole, L. |
collection | PubMed |
description | Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis. |
format | Online Article Text |
id | pubmed-6279957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-62799572018-12-14 Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status Bramasole, L. Sinha, A. Gurevich, S. Radzinski, M. Klein, Y. Panat, N. Gefen, E. Rinaldi, T. Jimenez-Morales, D. Johnson, J. Krogan, N.J. Reis, N. Reichmann, D. Glickman, M.H. Pick, E. Redox Biol Research Paper Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis. Elsevier 2018-11-17 /pmc/articles/PMC6279957/ /pubmed/30508698 http://dx.doi.org/10.1016/j.redox.2018.11.010 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Bramasole, L. Sinha, A. Gurevich, S. Radzinski, M. Klein, Y. Panat, N. Gefen, E. Rinaldi, T. Jimenez-Morales, D. Johnson, J. Krogan, N.J. Reis, N. Reichmann, D. Glickman, M.H. Pick, E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title | Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title_full | Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title_fullStr | Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title_full_unstemmed | Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title_short | Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status |
title_sort | proteasome lid bridges mitochondrial stress with cdc53/cullin1 neddylation status |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279957/ https://www.ncbi.nlm.nih.gov/pubmed/30508698 http://dx.doi.org/10.1016/j.redox.2018.11.010 |
work_keys_str_mv | AT bramasolel proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT sinhaa proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT gurevichs proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT radzinskim proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT kleiny proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT panatn proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT gefene proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT rinaldit proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT jimenezmoralesd proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT johnsonj proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT krogannj proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT reisn proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT reichmannd proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT glickmanmh proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus AT picke proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus |