Cargando…

Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status

Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubyla...

Descripción completa

Detalles Bibliográficos
Autores principales: Bramasole, L., Sinha, A., Gurevich, S., Radzinski, M., Klein, Y., Panat, N., Gefen, E., Rinaldi, T., Jimenez-Morales, D., Johnson, J., Krogan, N.J., Reis, N., Reichmann, D., Glickman, M.H., Pick, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279957/
https://www.ncbi.nlm.nih.gov/pubmed/30508698
http://dx.doi.org/10.1016/j.redox.2018.11.010
_version_ 1783378577315594240
author Bramasole, L.
Sinha, A.
Gurevich, S.
Radzinski, M.
Klein, Y.
Panat, N.
Gefen, E.
Rinaldi, T.
Jimenez-Morales, D.
Johnson, J.
Krogan, N.J.
Reis, N.
Reichmann, D.
Glickman, M.H.
Pick, E.
author_facet Bramasole, L.
Sinha, A.
Gurevich, S.
Radzinski, M.
Klein, Y.
Panat, N.
Gefen, E.
Rinaldi, T.
Jimenez-Morales, D.
Johnson, J.
Krogan, N.J.
Reis, N.
Reichmann, D.
Glickman, M.H.
Pick, E.
author_sort Bramasole, L.
collection PubMed
description Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
format Online
Article
Text
id pubmed-6279957
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-62799572018-12-14 Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status Bramasole, L. Sinha, A. Gurevich, S. Radzinski, M. Klein, Y. Panat, N. Gefen, E. Rinaldi, T. Jimenez-Morales, D. Johnson, J. Krogan, N.J. Reis, N. Reichmann, D. Glickman, M.H. Pick, E. Redox Biol Research Paper Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis. Elsevier 2018-11-17 /pmc/articles/PMC6279957/ /pubmed/30508698 http://dx.doi.org/10.1016/j.redox.2018.11.010 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Bramasole, L.
Sinha, A.
Gurevich, S.
Radzinski, M.
Klein, Y.
Panat, N.
Gefen, E.
Rinaldi, T.
Jimenez-Morales, D.
Johnson, J.
Krogan, N.J.
Reis, N.
Reichmann, D.
Glickman, M.H.
Pick, E.
Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title_full Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title_fullStr Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title_full_unstemmed Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title_short Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status
title_sort proteasome lid bridges mitochondrial stress with cdc53/cullin1 neddylation status
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279957/
https://www.ncbi.nlm.nih.gov/pubmed/30508698
http://dx.doi.org/10.1016/j.redox.2018.11.010
work_keys_str_mv AT bramasolel proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT sinhaa proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT gurevichs proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT radzinskim proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT kleiny proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT panatn proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT gefene proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT rinaldit proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT jimenezmoralesd proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT johnsonj proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT krogannj proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT reisn proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT reichmannd proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT glickmanmh proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus
AT picke proteasomelidbridgesmitochondrialstresswithcdc53cullin1neddylationstatus