Cargando…
Revealing Unknown Protein Structures Using Computational Conformational Sampling Guided by Experimental Hydrogen-Exchange Data
Both experimental and computational methods are available to gather information about a protein’s conformational space and interpret changes in protein structure. However, experimentally observing and computationally modeling large proteins remain critical challenges for structural biology. Our work...
Autores principales: | Devaurs, Didier, Antunes, Dinler A., Kavraki, Lydia E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280153/ https://www.ncbi.nlm.nih.gov/pubmed/30384411 http://dx.doi.org/10.3390/ijms19113406 |
Ejemplares similares
-
Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data
por: Devaurs, Didier, et al.
Publicado: (2017) -
Computational analysis of complement inhibitor compstatin using molecular dynamics
por: Devaurs, Didier, et al.
Publicado: (2020) -
Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins
por: Devaurs, Didier, et al.
Publicado: (2019) -
General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept
por: Antunes, Dinler A., et al.
Publicado: (2018) -
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
por: Conev, Anja, et al.
Publicado: (2023)