Cargando…

Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration

The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen u...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyung Won, Tang, Ngang Heok, Piggott, Christopher A, Andrusiak, Matthew G, Park, Seungmee, Zhu, Ming, Kurup, Naina, Cherra, Salvatore J, Wu, Zilu, Chisholm, Andrew D, Jin, Yishi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281318/
https://www.ncbi.nlm.nih.gov/pubmed/30461420
http://dx.doi.org/10.7554/eLife.39756
_version_ 1783378820367122432
author Kim, Kyung Won
Tang, Ngang Heok
Piggott, Christopher A
Andrusiak, Matthew G
Park, Seungmee
Zhu, Ming
Kurup, Naina
Cherra, Salvatore J
Wu, Zilu
Chisholm, Andrew D
Jin, Yishi
author_facet Kim, Kyung Won
Tang, Ngang Heok
Piggott, Christopher A
Andrusiak, Matthew G
Park, Seungmee
Zhu, Ming
Kurup, Naina
Cherra, Salvatore J
Wu, Zilu
Chisholm, Andrew D
Jin, Yishi
author_sort Kim, Kyung Won
collection PubMed
description The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD(+)) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.
format Online
Article
Text
id pubmed-6281318
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-62813182018-12-07 Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration Kim, Kyung Won Tang, Ngang Heok Piggott, Christopher A Andrusiak, Matthew G Park, Seungmee Zhu, Ming Kurup, Naina Cherra, Salvatore J Wu, Zilu Chisholm, Andrew D Jin, Yishi eLife Neuroscience The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD(+)) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration. eLife Sciences Publications, Ltd 2018-11-21 /pmc/articles/PMC6281318/ /pubmed/30461420 http://dx.doi.org/10.7554/eLife.39756 Text en © 2018, Kim et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Kim, Kyung Won
Tang, Ngang Heok
Piggott, Christopher A
Andrusiak, Matthew G
Park, Seungmee
Zhu, Ming
Kurup, Naina
Cherra, Salvatore J
Wu, Zilu
Chisholm, Andrew D
Jin, Yishi
Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title_full Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title_fullStr Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title_full_unstemmed Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title_short Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD(+) in axon regeneration
title_sort expanded genetic screening in caenorhabditis elegans identifies new regulators and an inhibitory role for nad(+) in axon regeneration
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281318/
https://www.ncbi.nlm.nih.gov/pubmed/30461420
http://dx.doi.org/10.7554/eLife.39756
work_keys_str_mv AT kimkyungwon expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT tangngangheok expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT piggottchristophera expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT andrusiakmatthewg expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT parkseungmee expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT zhuming expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT kurupnaina expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT cherrasalvatorej expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT wuzilu expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT chisholmandrewd expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration
AT jinyishi expandedgeneticscreeningincaenorhabditiselegansidentifiesnewregulatorsandaninhibitoryrolefornadinaxonregeneration