Cargando…
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
Predicting the functional consequences of genetic variants in non-coding regions is a challenging problem. We propose here a semi-supervised approach, GenoNet, to jointly utilize experimentally confirmed regulatory variants (labeled variants), millions of unlabeled variants genome-wide, and more tha...
Autores principales: | He, Zihuai, Liu, Linxi, Wang, Kai, Ionita-Laza, Iuliana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281617/ https://www.ncbi.nlm.nih.gov/pubmed/30518757 http://dx.doi.org/10.1038/s41467-018-07349-w |
Ejemplares similares
-
BIGKnock: fine-mapping gene-based associations via knockoff analysis of biobank-scale data
por: Ma, Shiyang, et al.
Publicado: (2023) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
por: He, Zihuai, et al.
Publicado: (2019) -
Cell Type-Specific Annotation and Fine Mapping of Variants Associated With Brain Disorders
por: Doostparast Torshizi, Abolfazl, et al.
Publicado: (2020) -
A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS
por: IONITA-LAZA, IULIANA, et al.
Publicado: (2016) -
Myopia progression risk assessment score (MPRAS): a promising new tool for risk stratification
por: Manoharan, Manoj K., et al.
Publicado: (2023)