Cargando…
RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes
We propose a generic framework for gene regulatory network (GRN) inference approached as a feature selection problem. GRNs obtained using Machine Learning techniques are often dense, whereas real GRNs are rather sparse. We use a Tikonov regularization inspired optimal L-curve criterion that utilizes...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283452/ https://www.ncbi.nlm.nih.gov/pubmed/29361062 http://dx.doi.org/10.1093/nar/gky015 |