Cargando…
RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes
We propose a generic framework for gene regulatory network (GRN) inference approached as a feature selection problem. GRNs obtained using Machine Learning techniques are often dense, whereas real GRNs are rather sparse. We use a Tikonov regularization inspired optimal L-curve criterion that utilizes...
Autores principales: | Mall, Raghvendra, Cerulo, Luigi, Garofano, Luciano, Frattini, Veronique, Kunji, Khalid, Bensmail, Halima, Sabedot, Thais S, Noushmehr, Houtan, Lasorella, Anna, Iavarone, Antonio, Ceccarelli, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283452/ https://www.ncbi.nlm.nih.gov/pubmed/29361062 http://dx.doi.org/10.1093/nar/gky015 |
Ejemplares similares
-
Detection of statistically significant network changes in complex biological networks
por: Mall, Raghvendra, et al.
Publicado: (2017) -
OTEH-10. Evolutionary trajectory of epigenomic of gliomas
por: Malta, Tathiane, et al.
Publicado: (2021) -
COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator
por: Rawi, Reda, et al.
Publicado: (2016) -
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
por: Colaprico, Antonio, et al.
Publicado: (2016) -
AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for monkeypox virus
por: Patel, Chirag N., et al.
Publicado: (2023)