Cargando…
Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in v...
Autores principales: | Sankar, Kannan, Hoi, Kam Hon, Yin, Yizhou, Ramachandran, Prasanna, Andersen, Nisana, Hilderbrand, Amy, McDonald, Paul, Spiess, Christoph, Zhang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284603/ https://www.ncbi.nlm.nih.gov/pubmed/30252602 http://dx.doi.org/10.1080/19420862.2018.1518887 |
Ejemplares similares
-
Dynamics of heavy chain junctional length biases in antibody repertoires
por: Sankar, Kannan, et al.
Publicado: (2020) -
High-throughput screening of antibody variants for chemical stability: identification of deamidation-resistant mutants
por: DiCara, Danielle M., et al.
Publicado: (2018) -
Antibody interfaces revealed through structural mining
por: Yin, Yizhou, et al.
Publicado: (2022) -
Antibody homotypic interactions are encoded by germline light chain complementarity determining region 2
por: Leonard, Brandon, et al.
Publicado: (2022) -
A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model
por: Tavella, Davide, et al.
Publicado: (2022)