Cargando…

Effect of dried fruit on postprandial glycemia: a randomized acute-feeding trial

BACKGROUND/OBJECTIVES: To investigate the effect of dried fruit in modifying postprandial glycemia, we assessed the ability of 4 dried fruits (dates, apricots, raisins, sultanas) to decrease postprandial glycemia through three mechanisms: a glycemic index (GI) effect, displacement effect, or ‘cataly...

Descripción completa

Detalles Bibliográficos
Autores principales: Viguiliouk, Effie, Jenkins, Alexandra L, Blanco Mejia, Sonia, Sievenpiper, John L, Kendall, Cyril W C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288147/
https://www.ncbi.nlm.nih.gov/pubmed/30531821
http://dx.doi.org/10.1038/s41387-018-0066-5
Descripción
Sumario:BACKGROUND/OBJECTIVES: To investigate the effect of dried fruit in modifying postprandial glycemia, we assessed the ability of 4 dried fruits (dates, apricots, raisins, sultanas) to decrease postprandial glycemia through three mechanisms: a glycemic index (GI) effect, displacement effect, or ‘catalytic’ fructose effect. SUBJECTS/METHODS: We conducted an acute randomized, multiple-crossover trial in an outpatient setting in 10 healthy adults. Participants received 3 white bread control meals and 12 dried fruit test meals in random order. The test meals included each of 4 dried fruits (dates, apricots, raisins, sultanas) alone (GI effect), 4 of the dried fruits displacing half the available carbohydrate in white bread (displacement effect), or 4 of the dried fruits providing a small ‘catalytic’ dose (7.5 g) of fructose added to white bread (‘catalytic’ fructose effect). The protocol followed the ISO method for the determination of GI (ISO 26642:2010). The primary outcome was mean ± SEM GI (glucose scale) for ease of comparison across the three mechanisms. RESULTS: Ten healthy participants (7 men, 3 women; mean ± SD age and BMI: 39 ± 12 years and 25 ± 2 kg/m(2)) were recruited and completed the trial. All dried fruit had a GI below that of white bread (GI = 71); however, only dried apricots (GI = 42 ± 5), raisins (GI = 55 ± 5), and sultanas (51 ± 4) showed a significant GI effect (P < 0.05). When displacing half the available carbohydrate in white bread, all dried fruit lowered the GI; however, only dried apricots (GI = 57 ± 5) showed a significant displacement effect (P = 0.025). None of the dried fruits showed a beneficial ‘catalytic’ fructose effect. CONCLUSIONS: In conclusion, dried fruits have a lower GI and reduce the glycemic response of white bread through displacement of half of the available carbohydrate. Longer-term randomized trials are needed to confirm whether dried fruit can contribute to sustainable improvements in glycemic control. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT02960373