Cargando…
[Rh(L-alaninate)(1,5-Cyclooctadiene)] Catalyzed Helix-Sense-Selective Polymerizations of Achiral Phenylacetylenes
The [Rh(L-alaninate)(cod)] (cod = 1,5-Cyclooctadiene) complex was synthesized and characterized. Asymmetric polymerizations of achiral phenylacetylene with two hydroxyl groups and a dodecyl group (DoDHPA) were performed by using the rhodium complex as the catalyst to provide polymers with a higher m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290612/ https://www.ncbi.nlm.nih.gov/pubmed/30961148 http://dx.doi.org/10.3390/polym10111223 |
Sumario: | The [Rh(L-alaninate)(cod)] (cod = 1,5-Cyclooctadiene) complex was synthesized and characterized. Asymmetric polymerizations of achiral phenylacetylene with two hydroxyl groups and a dodecyl group (DoDHPA) were performed by using the rhodium complex as the catalyst to provide polymers with a higher molecular weight (>10(5)) than the polymers obtained using the [Rh(cod)Cl](2) initiator systems. The resulting polymers showed circular dichroism (CD) signals at approximately 310 and 470 nm, indicating that they have a preferential one-handed helical structure. The helix sense in the polymer main chain was controlled by the sign of the catalyst chirality. These findings suggest that the rhodium complex with a chiral amine is the true active species for the helix-sense-selective polymerization of DoDHPA. The [Rh(L-alaninate)(cod)] complex also exhibits high catalytic activity in the polymerization of phenylacetylene (PA) to give a high yield and molecular weight. All these results demonstrate that this Rh complex is an excellent catalyst for the polymerization of phenylacetylene monomers. |
---|