Cargando…
Pioneering topological methods for network-based drug–target prediction by exploiting a brain-network self-organization theory
The bipartite network representation of the drug–target interactions (DTIs) in a biosystem enhances understanding of the drugs’ multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming...
Autores principales: | Durán, Claudio, Daminelli, Simone, Thomas, Josephine M, Haupt, V Joachim, Schroeder, Michael, Cannistraci, Carlo Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291778/ https://www.ncbi.nlm.nih.gov/pubmed/28453640 http://dx.doi.org/10.1093/bib/bbx041 |
Ejemplares similares
-
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
por: Cannistraci, Carlo Vittorio
Publicado: (2018) -
Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2013) -
Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key
por: Haupt, V. Joachim, et al.
Publicado: (2013) -
Correction: Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key
por: Haupt, V. Joachim, et al.
Publicado: (2013) -
Drug target prioritization by perturbed gene expression and network information
por: Isik, Zerrin, et al.
Publicado: (2015)