Cargando…

ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth

BACKGROUND: The ability of solid tumor cells to resist anoikis, apoptosis triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. ErbB2/Her2 oncoprotein is often overproduced by breast tumor cells and blocks their anoikis by partially understo...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Iman Aftab, Yoo, Byong Hoon, McPhee, Michael, Masson, Olivier, Surette, Alexi, Dakin-Hache, Kelly, Younis, Tallal, Bethune, Gillian, Rosen, Kirill V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293553/
https://www.ncbi.nlm.nih.gov/pubmed/30545388
http://dx.doi.org/10.1186/s13058-018-1080-1
_version_ 1783380558706900992
author Khan, Iman Aftab
Yoo, Byong Hoon
McPhee, Michael
Masson, Olivier
Surette, Alexi
Dakin-Hache, Kelly
Younis, Tallal
Bethune, Gillian
Rosen, Kirill V.
author_facet Khan, Iman Aftab
Yoo, Byong Hoon
McPhee, Michael
Masson, Olivier
Surette, Alexi
Dakin-Hache, Kelly
Younis, Tallal
Bethune, Gillian
Rosen, Kirill V.
author_sort Khan, Iman Aftab
collection PubMed
description BACKGROUND: The ability of solid tumor cells to resist anoikis, apoptosis triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. ErbB2/Her2 oncoprotein is often overproduced by breast tumor cells and blocks their anoikis by partially understood mechanisms. In our effort to understand them better, we observed that detachment of nonmalignant human breast epithelial cells from the ECM upregulates the transcription factor Irf6. Irf6 is thought to play an important role in mammary gland homeostasis and causes apoptosis by unknown mechanisms. We noticed that ErbB2, when overproduced by detached breast epithelial cells, downregulates Irf6. METHODS: To test whether ErbB2 downregulates Irf6 in human ErbB2-positive breast cancer cells, we examined the effect of ErbB2 inhibitors, such as the anti-ErbB2 antibody trastuzumab or the ErbB2/epidermal growth factor receptor small-molecule inhibitor lapatinib, on Irf6 in these cells. Moreover, we performed Irf6 IHC analysis of tumor samples derived from the locally advanced ErbB2-positive breast cancers before and after neoadjuvant trastuzumab-based therapies. To examine the role of Irf6 in anoikis of nonmalignant and ErbB2-overproducing breast epithelial cells, we studied anoikis after knocking down Irf6 in the former cells by RNA interference and after overproducing Irf6 in the latter cells. To examine the mechanisms by which cell detachment and ErbB2 control Irf6 expression in breast epithelial cells, we tested the effects of genetic and pharmacological inhibitors of the known ErbB2-dependent signaling pathways on Irf6 in these cells. RESULTS: We observed that trastuzumab and lapatinib upregulate Irf6 in ErbB2-positive human breast tumor cells and that neoadjuvant trastuzumab-based therapies tend to upregulate Irf6 in human breast tumors. We found that detachment-induced Irf6 upregulation in nonmalignant breast epithelial cells requires the presence of the transcription factor ∆Np63α and that Irf6 mediates their anoikis. We showed that ErbB2 blocks Irf6 upregulation in ErbB2-overproducing cells by activating the mitogen-activated protein kinases that inhibit ∆Np63α-dependent signals required for Irf6 upregulation. Finally, we demonstrated that ErbB2-driven Irf6 downregulation in ErbB2-overproducing breast epithelial cells blocks their anoikis and promotes their anchorage-independent growth. CONCLUSIONS: We have demonstrated that ErbB2 blocks anoikis of breast epithelial cells by downregulating Irf6. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13058-018-1080-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6293553
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-62935532018-12-18 ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth Khan, Iman Aftab Yoo, Byong Hoon McPhee, Michael Masson, Olivier Surette, Alexi Dakin-Hache, Kelly Younis, Tallal Bethune, Gillian Rosen, Kirill V. Breast Cancer Res Research Article BACKGROUND: The ability of solid tumor cells to resist anoikis, apoptosis triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. ErbB2/Her2 oncoprotein is often overproduced by breast tumor cells and blocks their anoikis by partially understood mechanisms. In our effort to understand them better, we observed that detachment of nonmalignant human breast epithelial cells from the ECM upregulates the transcription factor Irf6. Irf6 is thought to play an important role in mammary gland homeostasis and causes apoptosis by unknown mechanisms. We noticed that ErbB2, when overproduced by detached breast epithelial cells, downregulates Irf6. METHODS: To test whether ErbB2 downregulates Irf6 in human ErbB2-positive breast cancer cells, we examined the effect of ErbB2 inhibitors, such as the anti-ErbB2 antibody trastuzumab or the ErbB2/epidermal growth factor receptor small-molecule inhibitor lapatinib, on Irf6 in these cells. Moreover, we performed Irf6 IHC analysis of tumor samples derived from the locally advanced ErbB2-positive breast cancers before and after neoadjuvant trastuzumab-based therapies. To examine the role of Irf6 in anoikis of nonmalignant and ErbB2-overproducing breast epithelial cells, we studied anoikis after knocking down Irf6 in the former cells by RNA interference and after overproducing Irf6 in the latter cells. To examine the mechanisms by which cell detachment and ErbB2 control Irf6 expression in breast epithelial cells, we tested the effects of genetic and pharmacological inhibitors of the known ErbB2-dependent signaling pathways on Irf6 in these cells. RESULTS: We observed that trastuzumab and lapatinib upregulate Irf6 in ErbB2-positive human breast tumor cells and that neoadjuvant trastuzumab-based therapies tend to upregulate Irf6 in human breast tumors. We found that detachment-induced Irf6 upregulation in nonmalignant breast epithelial cells requires the presence of the transcription factor ∆Np63α and that Irf6 mediates their anoikis. We showed that ErbB2 blocks Irf6 upregulation in ErbB2-overproducing cells by activating the mitogen-activated protein kinases that inhibit ∆Np63α-dependent signals required for Irf6 upregulation. Finally, we demonstrated that ErbB2-driven Irf6 downregulation in ErbB2-overproducing breast epithelial cells blocks their anoikis and promotes their anchorage-independent growth. CONCLUSIONS: We have demonstrated that ErbB2 blocks anoikis of breast epithelial cells by downregulating Irf6. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13058-018-1080-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-12-13 2018 /pmc/articles/PMC6293553/ /pubmed/30545388 http://dx.doi.org/10.1186/s13058-018-1080-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Khan, Iman Aftab
Yoo, Byong Hoon
McPhee, Michael
Masson, Olivier
Surette, Alexi
Dakin-Hache, Kelly
Younis, Tallal
Bethune, Gillian
Rosen, Kirill V.
ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title_full ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title_fullStr ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title_full_unstemmed ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title_short ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth
title_sort erbb2-driven downregulation of the transcription factor irf6 in breast epithelial cells is required for their 3d growth
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293553/
https://www.ncbi.nlm.nih.gov/pubmed/30545388
http://dx.doi.org/10.1186/s13058-018-1080-1
work_keys_str_mv AT khanimanaftab erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT yoobyonghoon erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT mcpheemichael erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT massonolivier erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT surettealexi erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT dakinhachekelly erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT younistallal erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT bethunegillian erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth
AT rosenkirillv erbb2drivendownregulationofthetranscriptionfactorirf6inbreastepithelialcellsisrequiredfortheir3dgrowth