Cargando…

Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing

Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedre, Brandán, Young, David, Charlier, Daniel, Mourenza, Álvaro, Rosado, Leonardo Astolfi, Marcos-Pascual, Laura, Wahni, Khadija, Martens, Edo, G. de la Rubia, Alfonso, Belousov, Vsevolod V., Mateos, Luis M., Messens, Joris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294878/
https://www.ncbi.nlm.nih.gov/pubmed/30463959
http://dx.doi.org/10.1073/pnas.1807954115
_version_ 1783380806750699520
author Pedre, Brandán
Young, David
Charlier, Daniel
Mourenza, Álvaro
Rosado, Leonardo Astolfi
Marcos-Pascual, Laura
Wahni, Khadija
Martens, Edo
G. de la Rubia, Alfonso
Belousov, Vsevolod V.
Mateos, Luis M.
Messens, Joris
author_facet Pedre, Brandán
Young, David
Charlier, Daniel
Mourenza, Álvaro
Rosado, Leonardo Astolfi
Marcos-Pascual, Laura
Wahni, Khadija
Martens, Edo
G. de la Rubia, Alfonso
Belousov, Vsevolod V.
Mateos, Luis M.
Messens, Joris
author_sort Pedre, Brandán
collection PubMed
description Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H(2)O(2). In this study, we present crystallographic evidence for the H(2)O(2)-sensing mechanism and H(2)O(2)-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H(2)O(2)-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H(2)O(2)-bound structure, we pinpoint the key residues for the peroxidatic reduction of H(2)O(2), and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H(2)O(2) reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H(2)O(2)-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H(2)O(2).
format Online
Article
Text
id pubmed-6294878
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-62948782018-12-21 Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing Pedre, Brandán Young, David Charlier, Daniel Mourenza, Álvaro Rosado, Leonardo Astolfi Marcos-Pascual, Laura Wahni, Khadija Martens, Edo G. de la Rubia, Alfonso Belousov, Vsevolod V. Mateos, Luis M. Messens, Joris Proc Natl Acad Sci U S A PNAS Plus Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H(2)O(2). In this study, we present crystallographic evidence for the H(2)O(2)-sensing mechanism and H(2)O(2)-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H(2)O(2)-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H(2)O(2)-bound structure, we pinpoint the key residues for the peroxidatic reduction of H(2)O(2), and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H(2)O(2) reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H(2)O(2)-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H(2)O(2). National Academy of Sciences 2018-12-11 2018-11-21 /pmc/articles/PMC6294878/ /pubmed/30463959 http://dx.doi.org/10.1073/pnas.1807954115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle PNAS Plus
Pedre, Brandán
Young, David
Charlier, Daniel
Mourenza, Álvaro
Rosado, Leonardo Astolfi
Marcos-Pascual, Laura
Wahni, Khadija
Martens, Edo
G. de la Rubia, Alfonso
Belousov, Vsevolod V.
Mateos, Luis M.
Messens, Joris
Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title_full Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title_fullStr Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title_full_unstemmed Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title_short Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
title_sort structural snapshots of oxyr reveal the peroxidatic mechanism of h(2)o(2) sensing
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294878/
https://www.ncbi.nlm.nih.gov/pubmed/30463959
http://dx.doi.org/10.1073/pnas.1807954115
work_keys_str_mv AT pedrebrandan structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT youngdavid structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT charlierdaniel structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT mourenzaalvaro structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT rosadoleonardoastolfi structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT marcospascuallaura structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT wahnikhadija structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT martensedo structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT gdelarubiaalfonso structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT belousovvsevolodv structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT mateosluism structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing
AT messensjoris structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing