Cargando…
Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing
Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294878/ https://www.ncbi.nlm.nih.gov/pubmed/30463959 http://dx.doi.org/10.1073/pnas.1807954115 |
_version_ | 1783380806750699520 |
---|---|
author | Pedre, Brandán Young, David Charlier, Daniel Mourenza, Álvaro Rosado, Leonardo Astolfi Marcos-Pascual, Laura Wahni, Khadija Martens, Edo G. de la Rubia, Alfonso Belousov, Vsevolod V. Mateos, Luis M. Messens, Joris |
author_facet | Pedre, Brandán Young, David Charlier, Daniel Mourenza, Álvaro Rosado, Leonardo Astolfi Marcos-Pascual, Laura Wahni, Khadija Martens, Edo G. de la Rubia, Alfonso Belousov, Vsevolod V. Mateos, Luis M. Messens, Joris |
author_sort | Pedre, Brandán |
collection | PubMed |
description | Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H(2)O(2). In this study, we present crystallographic evidence for the H(2)O(2)-sensing mechanism and H(2)O(2)-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H(2)O(2)-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H(2)O(2)-bound structure, we pinpoint the key residues for the peroxidatic reduction of H(2)O(2), and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H(2)O(2) reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H(2)O(2)-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H(2)O(2). |
format | Online Article Text |
id | pubmed-6294878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-62948782018-12-21 Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing Pedre, Brandán Young, David Charlier, Daniel Mourenza, Álvaro Rosado, Leonardo Astolfi Marcos-Pascual, Laura Wahni, Khadija Martens, Edo G. de la Rubia, Alfonso Belousov, Vsevolod V. Mateos, Luis M. Messens, Joris Proc Natl Acad Sci U S A PNAS Plus Hydrogen peroxide (H(2)O(2)) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H(2)O(2). One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H(2)O(2). In this study, we present crystallographic evidence for the H(2)O(2)-sensing mechanism and H(2)O(2)-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H(2)O(2)-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H(2)O(2)-bound structure, we pinpoint the key residues for the peroxidatic reduction of H(2)O(2), and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H(2)O(2) reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H(2)O(2)-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H(2)O(2). National Academy of Sciences 2018-12-11 2018-11-21 /pmc/articles/PMC6294878/ /pubmed/30463959 http://dx.doi.org/10.1073/pnas.1807954115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Pedre, Brandán Young, David Charlier, Daniel Mourenza, Álvaro Rosado, Leonardo Astolfi Marcos-Pascual, Laura Wahni, Khadija Martens, Edo G. de la Rubia, Alfonso Belousov, Vsevolod V. Mateos, Luis M. Messens, Joris Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title | Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title_full | Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title_fullStr | Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title_full_unstemmed | Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title_short | Structural snapshots of OxyR reveal the peroxidatic mechanism of H(2)O(2) sensing |
title_sort | structural snapshots of oxyr reveal the peroxidatic mechanism of h(2)o(2) sensing |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294878/ https://www.ncbi.nlm.nih.gov/pubmed/30463959 http://dx.doi.org/10.1073/pnas.1807954115 |
work_keys_str_mv | AT pedrebrandan structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT youngdavid structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT charlierdaniel structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT mourenzaalvaro structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT rosadoleonardoastolfi structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT marcospascuallaura structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT wahnikhadija structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT martensedo structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT gdelarubiaalfonso structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT belousovvsevolodv structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT mateosluism structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing AT messensjoris structuralsnapshotsofoxyrrevealtheperoxidaticmechanismofh2o2sensing |