Cargando…

Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication

The increased interest in secondary metabolites (SMs) has driven a number of genome sequencing projects to elucidate their biosynthetic pathways. As a result, studies revealed that the number of secondary metabolite gene clusters (SMGCs) greatly outnumbers detected compounds, challenging current met...

Descripción completa

Detalles Bibliográficos
Autores principales: Theobald, Sebastian, Vesth, Tammi C., Rendsvig, Jakob Kræmmer, Nielsen, Kristian Fog, Riley, Robert, de Abreu, Lucas Magalhães, Salamov, Asaf, Frisvad, Jens Christian, Larsen, Thomas Ostenfeld, Andersen, Mikael Rørdam, Hoof, Jakob Blæsbjerg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298953/
https://www.ncbi.nlm.nih.gov/pubmed/30560908
http://dx.doi.org/10.1038/s41598-018-36561-3
_version_ 1783381384991080448
author Theobald, Sebastian
Vesth, Tammi C.
Rendsvig, Jakob Kræmmer
Nielsen, Kristian Fog
Riley, Robert
de Abreu, Lucas Magalhães
Salamov, Asaf
Frisvad, Jens Christian
Larsen, Thomas Ostenfeld
Andersen, Mikael Rørdam
Hoof, Jakob Blæsbjerg
author_facet Theobald, Sebastian
Vesth, Tammi C.
Rendsvig, Jakob Kræmmer
Nielsen, Kristian Fog
Riley, Robert
de Abreu, Lucas Magalhães
Salamov, Asaf
Frisvad, Jens Christian
Larsen, Thomas Ostenfeld
Andersen, Mikael Rørdam
Hoof, Jakob Blæsbjerg
author_sort Theobald, Sebastian
collection PubMed
description The increased interest in secondary metabolites (SMs) has driven a number of genome sequencing projects to elucidate their biosynthetic pathways. As a result, studies revealed that the number of secondary metabolite gene clusters (SMGCs) greatly outnumbers detected compounds, challenging current methods to dereplicate and categorize this amount of gene clusters on a larger scale. Here, we present an automated workflow for the genetic dereplication and analysis of secondary metabolism genes in fungi. Focusing on the secondary metabolite rich genus Aspergillus, we categorize SMGCs across genomes into SMGC families using network analysis. Our method elucidates the diversity and dynamics of secondary metabolism in section Nigri, showing that SMGC diversity within the section has the same magnitude as within the genus. Using our genome analysis we were able to predict the gene cluster responsible for biosynthesis of malformin, a potentiator of anti-cancer drugs, in 18 strains. To proof the general validity of our predictions, we developed genetic engineering tools in Aspergillus brasiliensis and subsequently verified the genes for biosynthesis of malformin.
format Online
Article
Text
id pubmed-6298953
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-62989532018-12-26 Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication Theobald, Sebastian Vesth, Tammi C. Rendsvig, Jakob Kræmmer Nielsen, Kristian Fog Riley, Robert de Abreu, Lucas Magalhães Salamov, Asaf Frisvad, Jens Christian Larsen, Thomas Ostenfeld Andersen, Mikael Rørdam Hoof, Jakob Blæsbjerg Sci Rep Article The increased interest in secondary metabolites (SMs) has driven a number of genome sequencing projects to elucidate their biosynthetic pathways. As a result, studies revealed that the number of secondary metabolite gene clusters (SMGCs) greatly outnumbers detected compounds, challenging current methods to dereplicate and categorize this amount of gene clusters on a larger scale. Here, we present an automated workflow for the genetic dereplication and analysis of secondary metabolism genes in fungi. Focusing on the secondary metabolite rich genus Aspergillus, we categorize SMGCs across genomes into SMGC families using network analysis. Our method elucidates the diversity and dynamics of secondary metabolism in section Nigri, showing that SMGC diversity within the section has the same magnitude as within the genus. Using our genome analysis we were able to predict the gene cluster responsible for biosynthesis of malformin, a potentiator of anti-cancer drugs, in 18 strains. To proof the general validity of our predictions, we developed genetic engineering tools in Aspergillus brasiliensis and subsequently verified the genes for biosynthesis of malformin. Nature Publishing Group UK 2018-12-18 /pmc/articles/PMC6298953/ /pubmed/30560908 http://dx.doi.org/10.1038/s41598-018-36561-3 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Theobald, Sebastian
Vesth, Tammi C.
Rendsvig, Jakob Kræmmer
Nielsen, Kristian Fog
Riley, Robert
de Abreu, Lucas Magalhães
Salamov, Asaf
Frisvad, Jens Christian
Larsen, Thomas Ostenfeld
Andersen, Mikael Rørdam
Hoof, Jakob Blæsbjerg
Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title_full Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title_fullStr Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title_full_unstemmed Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title_short Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
title_sort uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298953/
https://www.ncbi.nlm.nih.gov/pubmed/30560908
http://dx.doi.org/10.1038/s41598-018-36561-3
work_keys_str_mv AT theobaldsebastian uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT vesthtammic uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT rendsvigjakobkræmmer uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT nielsenkristianfog uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT rileyrobert uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT deabreulucasmagalhaes uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT salamovasaf uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT frisvadjenschristian uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT larsenthomasostenfeld uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT andersenmikaelrørdam uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication
AT hoofjakobblæsbjerg uncoveringsecondarymetaboliteevolutionandbiosynthesisusinggeneclusternetworksandgeneticdereplication