Cargando…
ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes
Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic “targeting oligonucleotide” is incorporated into the chromosome via homologous recombination...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299477/ https://www.ncbi.nlm.nih.gov/pubmed/30538179 http://dx.doi.org/10.1128/mBio.01467-18 |
Sumario: | Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic “targeting oligonucleotide” is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annealase. This oligonucleotide contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a “payload plasmid” that contains a cognate recombination site and a selectable marker. The targeting oligonucleotide and payload plasmid are cotransformed into a RecT- and Int-expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate gene knockouts, promoter replacements, or C-terminal tags. This new system is called ORBIT (for “oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting”) and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions, or fusions in a bacterial chromosome. We demonstrate the utility of this “drag and drop” strategy by the construction of insertions or deletions in over 100 genes in Mycobacterium tuberculosis and M. smegmatis. |
---|